US Contribution to YOPP-SH

David Bromwich

With contributions from:
Kevin Manning, Jordan Powers, Dan Lubin, Jonathan Wille, Aaron Wilson, Sheng-Hung Wang, and Julien Nicolas

YOPP-SH Planning Meeting
Columbus - June 6, 2016
Year of Polar Prediction (YOPP) - Southern Hemisphere

Latest News on YOPP-SH:

- Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) Planning Meeting, Columbus, Ohio (June 6, 2016)
- Special Observing Period for YOPP-SH: Austral Spring 2018 - Austral Fall 2019

Description

- Coordination Committee for YOPP-SH (Last updated: Oct. 08, 2015)

YOPP MISSION:

Enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, verification, user-engagement and education activities.

The Year of Polar Prediction (YOPP) is one of the key elements of the Polar Prediction Project. YOPP is scheduled to take place from mid-2017 to mid-2019.

http://polarmet.osu.edu/YOPP-SH/
Projects endorsed by YOPP-SH

- Upper air soundings from Neumayer and RV Polarstern
- Italian Antarctic Meteo-Climatological Observatories (IAMCO)
- Southern Ocean Aerosol Clouds And ice Processes Experiment (SEASCAPE)
- GEO Cold Regions Initiative (GEO CRI): Information Services for Cold Regions
- ARM West Antarctic Radiation Experiment (AWARE)
- WGNE activities for support of YOPP
- Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES)
- Influence of small-scale processes on the dynamics of the coupled atmosphere-cryosphere ocean system on daily to seasonal timescales in the region of Adélie Land, Antarctica
- Lower tropospheric Ozone Profiles over Antarctic Plateau (LOPOP)
- RADiative Impact of ANtarctic Clouds Experiment (RADIANCE)
- Precipitation Impact on the Regional ANtarctic Accumulation (PIRANhA)
- TRaceability and Improvement of Meteorological Measurements during YOPP intEnsive peRiods, to better investigate ABL characteristics and coupling processes in coastal Antarctica (TRIMMER)
- Surface-Atmosphere Mass and Energy Exchanges at a Coastal Antarctic site (SAMEECA)
- Antarctic Meteorology and Snow Research: from Process Understanding to Improved Predictions (ASPIRE)
Antarctic Mesoscale Prediction System (AMPS)

- Provides customized NWP support for US Antarctic Program forecasters
 - Forecast model is the Weather Research and Forecasting Model (WRF-ARW), optimized for the Antarctic environment (Polar WRF)
- Funded by the National Science Foundation
 - Run by NCAR/Mesoscale and Microscale Meteorology Laboratory
 - Primary goals are to support USAP forecasters and their needs, with secondary aims to support research and education efforts in Antarctic meteorology
- AMPS products/model output
 - Real-time forecasts running since October 2000, through many updates
 - Real-time products disseminated primarily through the AMPS web page (http://www2.mmm.ucar.edu/rt/amps/) and the Antarctic-IDD network
 - Forecast archive: recent years available through Earth System Grid
- Limited support for special projects
 - South Georgia Island Wave Experiment (SG-WEX), Antarctic Cloud Microphysics Campaign, 2ODIAC, ORCAS, AVOCET
AMPS Domains

30-km

3.3-km

10-km

3.3-km

1.1-km

3.3-km
Example of AMPS high-resolution climatology

2015 annual mean
10m wind field over the
Ross Island area from
AMPS 1.1km domain
AMPS downscaling: 1.1km \rightarrow 330m

AMPS 1.1km @ 1200 UTC 20 Aug 2014

AMPS-NDOWN 330m @ 1200 UTC 20 Aug 2014
ARM West Antarctic Radiation Experiment

A Joint NSF-DOE ARM Mobile Facility Campaign

Objectives

1. Improve understanding of mechanisms governing West Antarctic energy balance and climate change
 - Influence of subtropical and tropical teleconnections
 - Influence of local cloud radiative forcing and feedbacks

2. Assessment and improvement of cloud physical parameterization in climate model simulations for the coldest climate regime
 - What factors govern cloud physics in a very cold and very pristine environment year around?

Deployment Plan

AMF2 at McMurdo Station (“Central Facility”)

Detailed cloud and aerosol observations with the most advanced atmospheric science equipment available today.

Dec. 2015 (*initially Oct. but bad weather got in the way!*) – 15 Jan. 2015 (Summer)

West Antarctic Ice Sheet (WAIS) Divide (“Extended Facility”)

Observations of cloud, upper air and surface energy budget

Figure adapted from Nicolas and Bromwich (2011)
2015-16 AWARE Field Campaign

The AWARE field party arrives at WAIS Divide Ice Camp on Dec 2, 2015 (Photo: AWARE)

AMF equipment at WAIS Divide on Dec 6, 2015 (Photo: AWARE)

More on this field campaign on Wednesday afternoon!
Measurements:

- **30m**: Temp, RH, Wind Speed, Wind Direction, Net Longwave and Shortwave Radiation
- **15m**: Temp, Wind Speed, Wind Direction
- **7.5m**: Temp, RH, Wind Speed, Wind Direction
- **4m**: Temp, Wind Speed
- **2m**: Temp, Wind Speed
- **1m**: Temp, Wind Speed

Photo: UW-AMRC
Positive Histogram

• AMPS overestimates the strength of the inversion for stronger wind speeds

![Histogram](image)

- Critical transition range is 4-8 m s⁻¹

AMPS Inv > Tower Inv
AMPS underestimates the strength of the inversion for weaker wind speeds.

Critical transition range is 4-8 m s$^{-1}$
Contributions to YOPP-SH

• From AMPS:
 - Assimilation of extra YOPP observations (obs put on GTS)
 - AMPS analyses and forecasts archived at NCAR and available for scientific investigations via web
 - Forecast plots for YOPP field campaigns as resources allow

• From AWARE:
 - Improved observation/prediction of Antarctic clouds

• From OSU/PMG:
 - Continued support for the Coordination Committee through webpage maintenance/development

• Other:
 - Alexander Tall Tower! capturing PBL characteristics in the Antarctic