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ABSTRACT: Atmospheric reanalyses are a valuable climate-related resource where in situ data are sparse. However, few

studies have investigated the skill of reanalyses to represent extreme climate indices over theNorthAmericanArctic, where

changes have been rapid and indigenous responses to change are critical. This study investigates temperature and pre-

cipitation extremes as defined by theExpert TeamonClimate ChangeDetection and Indices (ETCCDI) over a 17-yr period

(2000–16) for regional and global reanalyses, namely the Arctic System Reanalysis, version 2 (ASRv2); North American

Regional Reanalysis (NARR); European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis;

Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2); and Global Meteorological

Forcing Dataset for Land Surface Modeling (GMFD). Results indicate that the best performances are demonstrated by

ASRv2 and ERA5. Relative to observations, reanalyses show the weakest performance over far northern basins (e.g., the

Arctic andHudson basins) where observing networks are less dense. Observations and reanalyses show consistent warming

with decreased frequency and intensity of cold extremes. Cold days, cold nights, frost days, and ice days have decreased

dramatically over the last two decades. Warming can be linked to a simultaneous increase in daily precipitation intensity

over several basins in the domain. Moreover, the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) distinctly

influence extreme climate indices. Thus, these findings detail the complexity of how the climate of theArctic is changing, not

just in an average sense, but in extreme events that have significant impacts on people and places.
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1. Introduction

Weather observations and climate data are sparse across the

Arctic compared to the midlatitudes and tropics (Zhang et al.

2011; Lader et al. 2016; Diaconescu et al. 2017). To overcome

this limitation, retrospective analyses (i.e., reanalyses)

synthesize a wide variety of surface, atmospheric, and satellite

data into model-based gridded datasets. A fundamental ad-

vantage of reanalyses is that they provide continuous data

coverage across the globe or region of interest, allowing re-

searchers to investigate climate change and variability over

recent decades (Dee et al. 2014).

Reanalyses and gridded observations demonstrate that

average temperatures are warming and precipitation is in-

creasing, with rapid changes occurring to the physical Arctic

environment (Boisvert and Stroeve 2015; Rapaić et al. 2015).

An improved understanding of extreme climate events, such as

the warmAlaskan winter (October–April) of 2015/16 when the

mean temperature was more than 48C above average (Walsh

et al. 2017), is needed. Accurate representation of extremes

across the Arctic is essential to the development of public

policies, proper management of hydrological resources, and

mitigation of impacts from human activity on the environment,

as future projections over North America indicate a significant

decrease in cold extremes and increase in warm extremes by

the end of the twenty-first century (Schoof and Robeson 2016;

Lader et al. 2017; Sheridan and Lee 2018; Wazneh et al. 2020).

Arctic-focused reanalysis studies have shown limited ability

to reproduce daily observed extremes of temperature and

precipitation (Lindsay et al. 2014; Donat et al. 2014; Koyama

and Stroeve 2019; Przybylak and Wyszy�nski 2020; Zhang et al.

2011; Rapaić et al. 2015; Lader et al. 2016; Diaconescu et al.

2017). Lindsay et al. (2014) evaluated temperature and pre-

cipitation from seven reanalyses at a monthly scale across the

Arctic and found significant biases compared to observations,

especially in summer for temperature and winter for precipi-

tation. Lader et al. (2016) used data from five atmospheric

reanalyses for Alaska to evaluate the representation of mean

and extremes of temperature and precipitation and found that

all reanalyses overestimate temperature variability during

summer, are too wet over the North Slope of Alaska, and tend

to underestimate winter rainfall in southeastern Alaska.

Diaconescu et al. (2017) reported that reanalyses can be used

with confidence to accurately represent observed hot extremes

(e.g., warm days) and precipitation-based frequency indices

(e.g., number of wet days) but struggle to reproduce cold ex-

tremes (e.g., cold days/night) or precipitation intensity ex-

tremes (e.g., very wet days) over northern Canada.

The aim of this study is to assess the performance of a se-

lection of modern global/regional reanalyses in estimating

observed climate extremes and trends over the North

American Arctic for a recent 17-yr period (2000–16). This

period was chosen as it matches the current Arctic System

Reanalysis, version 2 (ASRv2; Bromwich et al. 2018), coverage

period and represents an era of rapid, amplified, and well-

observed Arctic change. This relatively short analysis period

limits the ability to fully explore the causal mechanisms for
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these trends but allows an assessment of the relative perfor-

mance of trends across multiple reanalysis products.

The North American Arctic was selected to take advan-

tage of a readily available gridded observation dataset over

this region and recent studies that have explored the link-

ages between Arctic changes and impacts in the midlati-

tudes (e.g., Cohen 2016; Overland and Wang 2018) as well

as the ever-growing threat of wildfires and other climate-

sensitive ecological impacts (e.g., Melvin et al. 2017; Young

et al. 2019). This is done by utilizing the framework rec-

ommended by the Expert Team on Climate Change

Detection and Indices (ETCCDI). This analysis will help

researchers evaluate the performance of the contemporary

reanalyses, proving their value in the study of Arctic climate

change and variability, including the occurrence of extreme

temperature and precipitation events. Also, these results

provide a breakthrough in understanding by decreasing the

uncertainty about the patterns of extreme temperature and

precipitation events over the Arctic where observational

information is sparse.

This paper is structured as follows. Section 2 describes the

observations, reanalyses, and statistical tests performed.

Section 3 discusses the results for the reference period 2000–16.

Section 4 presents a summary and concluding remarks.

2. Data and methods

a. Data

We applied a multiple dataset approach to increase the

confidence in using reanalyses to estimate temperature and

precipitation extremes following previous climate and hydro-

meteorological studies (Lindsay et al. 2014; Yin et al. 2015;

Diaconescu et al. 2017; Wong et al. 2017). Table 1 summarizes

the characteristics of the observations and reanalyses. All

gridded products provide daily temperature and precipitation

at horizontal spatial resolutions ranging from 15 to 65 km

across the North American Arctic (Fig. 1).

Daily observed meteorological data were acquired from

DAYMET (version 3) supported by the National Aeronautics

and SpaceAdministration (NASA; Thornton et al. 1997, 2018).

DAYMET provides a 1-km spatial resolution of weather pa-

rameters for North America including Canada, Mexico, and

theUnited States for 1980–2016. DAYMET inputs are a digital

elevation model and in situ weather observations of daily max-

imum temperature, minimum temperature, and precipitation

from theGlobalHistorical ClimatologyNetwork (GHCN-Daily;

Thornton et al. 2018).

To our knowledge, there are no studies that have evaluated

the performance of temperature and precipitation extremes

in newer reanalyses. We include reanalysis data from two re-

gional reanalyses: ASRv2 (NCAR 2017; Bromwich et al.

2018) and the North American Regional Reanalysis (NARR;

Mesinger et al. 2006). Global products include the ERA5

produced by the European Centre for Medium-Range Weather

Forecasts (ECWMF; Hersbach et al. 2020); Modern-Era

Retrospective Analysis for Research and Applications, ver-

sion 2 (MERRA-2; Gelaro et al. 2017); and the Global

Meteorological Forcing Dataset for Land Surface Modeling

(GMFD; Sheffield et al. 2006). Studies have shown that outputs

from these reanalyses (e.g., ASRv2, MERRA-2, and ERA5)

are more consistent with climate observations (Gelaro et al.

2017; Koyama and Stroeve 2019; Wang et al. 2019; Bromwich

et al. 2018; Tarek et al. 2020) than are the earlier generation of

reanalyses (e.g., ERA-40 and NCEP–NCAR) because of

higher horizontal and vertical resolutions and improved model

physics.

ERA5 and MERRA-2 are considered ‘‘full input’’ rean-

alyses in that they assimilate surface and upper-air conven-

tional and satellite data (Fujiwara et al. 2017). In addition to

the conventional surface and upper-air data, ASRv2 assimi-

lates QuikSCAT, and Special Sensor Microwave Imager sea

surface winds, satellite radiances, and GPS data (Bromwich

et al. 2018). Like ASRv2, NARR does not assimilate satellite

temperatures retrievals but includes satellite radiances.

TABLE 1. Characteristics of reanalyses and gridded observation datasets. Letters of the second column designate gauge data (G),

reanalysis (R), and combined sources (C; i.e., gauge, satellite, and reanalysis).

Product name and download link Type Period Horizontal resolution Spatial coverage

DAYMET (version 3); https://daac.ornl.gov/ G 1980–2018 1 km North America

The Arctic System Reanalysis (ASRv2);

https://rda.ucar.edu/datasets/ds631.1/

R 2000–16 15 km ;408–908N

North American Regional Reanalysis

(NARR); https://rda.ucar.edu/datasets/

ds608.0/

R 1979–present 31 km North America

ECMWF ERA5 Reanalysis (ERA5)

https://rda.ucar.edu/datasets/ds633.0/

R 1979–present 31 km Global

The Modern-Era Retrospective Analysis

for Research and Applications, version 2

(MERRA-2); https://disc.sci.gsfc.nasa.gov/

R 1980–present ;65 km (0.58 3 0.6258) Global

Global Meteorological Forcing Dataset

for Land Surface Modeling (GMFD);

https://rda.ucar.edu/datasets/ds314.0

C 1948–2016 ;28 km (0.258) Global
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ERA5 assimilates precipitation from ground-based radar

from 2009 onward, MERRA-2 uses observation-based pre-

cipitation data to correct the precipitation over land surfaces

outside of the high latitudes (Reichle et al. 2017), and NARR

assimilates precipitation (mostly over lower latitudes with

limited input across Canada) (Mesinger et al. 2006). GMFD is

considered a reanalysis product, because the daily outputs of

temperature and precipitation are constructed using the

National Centers for Environmental Prediction–National

Center for Atmospheric Research (NCEP–NCAR) reanalysis

and global observations compiled by the Climate Research Unit

(CRU), namely the monthly CRU TS3.24.01 gridded at 0.58
horizontal spatial resolution.

The period studiedmatches the currentASRv2 period (2000–

16; 17 yr). All datasets are regridded to a common horizontal

resolution of the 0.258 latitude/longitude covering the whole

domain (Fig. 1a) using a bilinear remapping algorithm with the

Climate Data Operators (CDO; https://code.mpimet.mpg.de/

projects/cdo/). Note, however, that native resolution is impor-

tant for the detection and accurate representation of extreme

events, and we are not dismissing the benefits that higher reso-

lution may provide. In fact, previous ASR studies have shown

the impact that higher horizontal resolution has on localized

processes such as wind events and surface fluxes across the

Arctic (Moore et al. 2015; Bromwich et al. 2016, 2018; Justino

et al. 2019). Roberts et al. (2018) thoroughly detail the spectrum

of benefits related to higher-resolution models. However, some

have shown that, despite a general improvement in capturing,

for example, precipitation extremes with higher resolution, it

does not always guarantee better skill and may require better

model physics or tuning (e.g., Bador et al. 2020). A systematic

analysis of incrementally finer resolution reanalyses is beyond

the scope of this paper but should be considered for future

assessments.

FIG. 1. (a) The domain of the North America region considered in this study. The colors

depict the hydrological basins according to the U.S. Geological Survey (https://

www.usgs.gov/). (b) The average number of weather and rainfall stations in each water-

shed. The number in parentheses indicates the percentage of the area considering the

DAYMET domain.
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b. Extreme climate indices

We have analyzed the performance of the reanalyses using 17

extreme climate indices (defined in Table 2) proposed by ETCCDI

(http://etccdi.pacificclimate.org/). Zhang et al. (2011) and Donat

et al. (2013) provide additional details on each index. The indices

are based on daily minimum temperature (TMIN), maximum

temperature (TMAX), and precipitation (PRCP). We use nine

temperature and eight precipitation indices relevant to the Arctic

and evaluate based on annual scale (Lader et al. 2016; Diaconescu

et al. 2017). These indices include absolute indices [e.g., hottest days

(TXx), ice days (ID), and frost days (FD)], percentile-based indices

[e.g., warm days (TX90p) and very wet days (R95p)], intensity in-

dices [e.g., maximum 5-day precipitation amount (RX5day)], fre-

quency indices [e.g., number of wet days (R1mm)], and indices

based on the duration of thewet or dry events [e.g., consecutivewet

days (CWD) and consecutive dry days (CDD)]. The package

‘‘climdex.pcic.ncdf’’ (version 0.5-4) was used to calculate extreme

climate indices, which is freely available to run on R software

(https://github.com/pacificclimate/climdex.pcic.ncdf).

The ETCCDI indices have been previously used for moni-

toring changes in climate extremes across different parts of the

world (Zhang et al. 2000; Aguilar et al. 2005; Skansi et al. 2013;

Ávila et al. 2016, 2019; Lader et al. 2016). They have been

widely used to evaluate the accuracy of the Earth system

models and reanalyses in simulating observed temperature and

precipitation extremes (Diaconescu et al. 2017; Lader et al.

2017; Avila-Diaz et al. 2020; Rapaić et al. 2015).

c. Evaluation metrics

The reanalyses are evaluated using annual values of climate

indices and spatial patterns compared with DAYMET using

TABLE 2. Definition of temperature and precipitation indices selected for analysis of extreme climate indices recommended by

ETCCDI. Note that TNn, TX10p, and TN10p are cold extreme indices and TXx, TX90p, and TN90p are hot extreme indices. A wet or dry

day is defined when precipitation (PR) is $ 1 or , 1mm. Also, note that 2TM (index 10) is not an ETCCDI index.

Index Indicator name Indicator definitions Units

Extreme indices derived from daily max and min temperature series

1. TXx Hottest day Annual max value of daily max

temperature

8C

2. TX10p Cold days Percentage of days when daily max

temperature , 10th percentile

%

3. TX90p Warm days Percentage of days when daily max

temperature . 90th percentile

%

4. TNn Coldest night Annual min value of

daily min temperature

8C

5. TN10p Cold nights Percentage of days when

daily min temperature , 10th

percentile

%

6. TN90p Warm nights Percentage of days when

daily min temperature . 90th

percentile

%

7. DTR Diurnal temperature range Annual mean difference between daily

max and min temperature

8C

8. ID Ice days Annual count of days when daily max

temperature , 08C
Days

9. FD Frost days Annual count of days when

daily min temperature , 08C
Days

10. 2TM Annual mean temperature Annual daily mean temperature 8C

Extreme indices derived from daily precipitation series

11. PRCPTOT Annual total wet-day precipitation Annual total precipitation (PR) in wet

days (PR $ 1mm)

mm

12. RX1day Max 1-day precipitation amount Annual max 1-day precipitation mm

13. RX5day Max 5-day precipitation amount Annual max consecutive 5-day

precipitation

mm

14. R95p Very wet days Annual total precipitation from days .
95th percentile

mm

15. SDII Simple daily intensity index The ratio of annual total precipitation to

the no. of wet days ($1mm)

mmday21

16. R1mm No. of wet days Annual count of days when PR $ 1mm Days

17. CWD Consecutive wet days Max no. of consecutive days with PR

$ 1mm

Days

18. CDD Consecutive dry days Max no. of consecutive days with PR

, 1mm

Days
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the modified Kling–Gupta efficiency [KGE; Eq. (1) below]

(Gupta et al. 1999;Kling et al. 2012).TheKGEmetric hasbeenused

bymany authors to evaluate the accuracy of atmospheric reanalyses

(Chaney et al. 2014; Siqueira et al. 2018; Acharya et al. 2019; Beck

et al. 2019a,b; Bhuiyan et al. 2019). The KGE approach combines

three components. The Pearson correlation coefficient [CORR;

Eq. (2) below] measures the degree of linear relationship between

variables that are simulated and measured. CORR values of 1.0

and21.0 respectively indicate a perfect positive and negative linear

relationship between the measured and simulated values, and

CORR5 0 implies no linear relationship (Moriasi et al. 2007). The

second component of KGE is the bias ratio [BR; Eq. (3) below],

which indicates the difference between mean simulated and ob-

served values (Walther and Moore 2005). The best value of BR is

1.0, and magnitudes that are less than or greater than 1.0 indicate

underestimation or overestimation, respectively, by simulated

values. The last component is the relative variability [RV; Eq. (4)

below], which delivers a measure of dispersion for data series. The

perfect value ofRV is 1.0;RV. 1 indicates overdispersed simulated

data, andRV, 1 indicatesunderdispersed simulateddata.Thus, the

optimal value of KGE, BR, and RV is 1.0. The definitions are

KGE5 12 [(12CORR)
2 1 (12BR)

2 1 (12RV)
2
]1/2 , (1)

correlation (CORR)5
�
n

i51

(x
i
2 x)(y

i
2 y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

(x
i
2 x)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(y
i
2 y)

2

s , (2)

bias ratio (BR)5 y/x, and (3)

relative variability (RV)5CV
y
/CV

x
. (4)

In Eqs. (2) and (3), xi is the gridded observation value, yi is

the gridded product being evaluated, and x and y are the

observed and estimated means. In Eq. (4), CVx and CVy are

the coefficient of variation of observed and estimated values,

respectively.

Skill is evaluated over the watersheds within the study do-

main (Fig. 1). It is important to note that the gridded obser-

vations (DAYMET) do not cover Greenland and Iceland. We

also limit the evaluation to areas north of approximately 428N
to avoid boundary discontinuities with ASRv2. For this reason,

we consider 14 watersheds: 1) Arctic Ocean Seaboard, 2)

Pacific Ocean Seaboard, 3) Yukon River, 4) Mackenzie River,

5) Fraser River, 6) Columbia River, 7) Great Basin, 8)

Colorado River, 9) Hudson Bay Seaboard, 10) Nelson River,

11) Missouri River, 12) Mississippi River, 13) St. Lawrence

River, and 14) Atlantic Ocean Seaboard. To avoid the long

name of watersheds, we restrict our usage to just the first name

(e.g., Hudson basin). It is important to know that that the

southwesternGreat Basin and Colorado basin were considered

in this study even though they are not in the North American

Arctic; however, they are part of the domain (Fig. 1a).

d. Trends of extreme climate indices

We used the Mann–Kendall (MK; Kendall 1975; Mann

1945) test and Sen’s slope (Sen 1968) method to calculate the

statistical significance and magnitude of trends in extreme

climate indices. We assessed the trend significance at the 90%

confidence level (p value# 0.1). For a full discussion of theMK

and slope estimator methods and their advantages in climate

series, see Yue et al. (2002). These methods were adopted,

because a nonparametric approach is less sensitive to outliers

in time series of climate extremes series than linear regression

(Skansi et al. 2013; Zhang et al. 2000). TheMK and Sen’s slope

methods are widely used to detect trends in climate indices

based on daily climate data (Cornes and Jones 2013; Skansi

et al. 2013; Rapaić et al. 2015; Ávila et al. 2016, 2019).

It must be stressed that the presence of autocorrelation in-

fluences the statistical significance of the MK test (El Kenawy

et al. 2011; Croitoru et al. 2016; Li et al. 2018). Consequently,

we performed an autocorrelation function to confirm serial

correlation in the climate extreme series using the Box–Pierce

(Box and Pierce 1970) test at the 95% confidence level (p ,
0.05). For the series that presented autocorrelation, we used

the modified MKmethod proposed by Hamed and Rao (1998)

to assess the significance and detrend the time series. The au-

tocorrelation analysis revealed that 94% of the series show

insignificant serial correlation at the lag-1. This indicates that

most of the temperature and precipitation series are free from

serial correlation.

3. Results

a. Temperature indices

1) PERFORMANCE EVALUATION

Figure 2 shows the evaluation metrics between the rean-

alyses and observational data for the hottest days (TXx) and

Fig. 3 displays the regional performance for each watershed.

According to the KGE scores (Fig. 2, first column), ASRv2 and

ERA5 show the best performance, while MERRA-2 and

GMFD perform the worst for the 2000–16 period, as demon-

strated by KGE larger than 0.7 for ASRv2 and ERA5 (Fig. 3a).

For KGE values of the key variables described here, see

Fig. A1 of the appendix. In general, all reanalyses show con-

sistently lower skill in capturing TXx over theArctic (basin 1 in

Fig. 1), northeastern parts of the Hudson (basin 9), and

northern Atlantic basins (basin 14; Figs. 1 and 2). This is sup-

ported by lower correlation coefficients [CORR; Fig. 2 (second

column) and Fig. 3b], warm biases over northeastern Hudson,

and northern Atlantic basins [BR; Fig. 2 (third column) and

Fig. 3c], and a general underestimation of the coefficient of

variation [RV; Fig. 2 (fourth column) and Fig. 3d].

Except for GMFD, all datasets strongly demonstrate the

ability to reproduce the coldest night index (TNn; Fig. 3). All

products tend to slightly underestimate the minimum tem-

perature (BR , 1.0) except for NARR, which overestimates

TNn values (Fig. 3c). Furthermore, the worst performance

among the reanalyses is demonstrated by GMFD, especially

over the Arctic, Yukon, Great, Colorado, Nelson, andMississippi

basins (basins 1, 3, 7, 8, 10, and 12, respectively) with KGE values

between 0.46 and 0.58 (Fig. 3, fourth column; also see Fig. A1 of

the appendix).
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All datasets adequately reproduce the annual percentile indices

(TX10p, TX90p, TN10p, and TN90p), with KGE values above 0.7

and CORR above 0.6, but with a moderate and consistent warm

bias. However, the lowest scores of KGE are found for warm days

(TX90p) over the Colorado basin (basin 8) in all datasets (Fig. 3a,

third column). Furthermore, the GMFD performed worse in the

west (watersheds 1–8) than the other datasets for percentiles indices

derived fromdailyminimum temperature (e.g., TN10p andTN90p).

The diurnal temperature range (DTR; Fig. 3, seventh col-

umn) shows relatively poor performance over the Arctic and

FIG. 2. Performancemetrics for warmest annual temperature (TXx) using theDAYMETdataset as a reference over the 2000–16 period

for (left) KGE, (left center) correlation (CORR, labeled here as Corr), (right center) bias ratio, and (right) RV scores for (a)–(d) ASRv2, (e)–(h)

NARR, (i)–(l) ERA5, (m)–(p)MERRA2, and (q)–(t) GMFD. The optimal value for all metrics is 1.0 indicated by dark colors on the right side of

the color bars for KGE and CORR and by the middle of the color bars for bias ratio and RV. Lighter colors illustrate weaker values.
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FIG. 3. Evaluationmetrics for temperature indices using theDAYMET dataset as a reference over 14 watersheds

(Fig. 1) for (a) KGE, (b) CORR, (c) bias ratio, and (d) RV. The period of the analysis is 2000–16. The letters on the

x axis represent ASRv2 (A), NARR (N), ERA5 (E), MERRA-2 (M), and GMFD (G). Asterisks indicate a sig-

nificant correlation at the 95% confidence level. The optimal value for all metrics is 1.0 (dark colors).
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Pacific in all datasets. For instance, the correlations between

datasets and reanalyses are insignificant and weaker (CORR,
0.4) in these northern basins. The reanalyses tend to underes-

timate the DTR index magnitude except for GMFD, which

represents the best performance by reasonably reproducing

CORR, BR, and RV (Figs. 3b–d).

Nevertheless, all reanalyses exhibit weaker performance

for the DTR index, predominantly at high latitudes (e.g., the

Arctic basin), attributed to the relative lack of observational

data. Similar to our results, Koenigk et al. (2015) also found

that ERA-Interim (Dee et al. 2011) underestimates the

Arctic diurnal temperature range during 1980–2005. Note

that the number of stations used in DAYMET to derive

gridded fields of maximum and minimum temperature during

each year, on average, is 67 stations in an area of more than

2.0 million km2 (Figs. 1a,b). For DTR, reproducing spatial

patterns is a particular challenge, because in situ data are

influenced by their proximity to water (Wilson et al. 2011),

which can lead to a smaller diurnal temperature ranges in

reanalyses.

Ice days (ID) and frost days (FD) show that most of the

reanalyses perform reasonably well for both indices. However,

over the Columbia, Great Basin, and Colorado watersheds

(basins 6–8), reanalyses display KGE values sometimes less

than 0.4 with substantial overestimation in the ID index. All

datasets tend to underestimate the FD index, with fewer

days than observed when the daily minimum temperature is

below 08C.
An important point to note is that, as shown by Beck

et al. (2019b), CORR is the most important factor in get-

ting greater values of KGE. For example, the CORR from

some temperature indices (e.g., TXx, TNn, TN10p, TN90,

DTR, and ID) are generally lower in the Arctic, Great

Basin, and Colorado watersheds (basins 1, 7, and 8), rel-

ative to what is observed for the CORR from the other

indices (Fig. 3b).

Over most basins, ASRv2, ERA5, and GMFD demon-

strate the smallest 2-m temperature (2TM) warm biases

(Fig. 3c). The worst performance among all metrics is

found for NARR, especially over the Pacific, Mackenzie,

Colorado, Nelson, and Atlantic basins (basins 2, 4, 8, 10,

and 14). For those basins, the KGE varies between 20.33

and 0.57 (Fig. 3c, last column; see also Fig. A1 of the

appendix). Betts et al. (2009) showed that ERA-Interim

has a cold bias in 2TM over the Mackenzie basin, and our

results indicate that the new generation of this reanalysis

(ERA5) underestimates 2TM over several basins (basins 1,

2, 4, 7, 8, and 9).

Figure 4a shows the ranking based on KGE scores for re-

analyses in climate temperature indices over the 14 watersheds

considered in this study. To that end, 10 temperature indices

were used to evaluate the ability of the five reanalyses to re-

produce climatic extremes for air temperature over a given

basin (Fig. 1). The best performance is noted in the ASRv2,

followed by ERA5, MERRA-2, GMFD, and NARR over the

whole region (Fig. 4a, far right).

In general, reanalyses are similar for temperature extremes

based on Fig. 3. We identified some discrepancies across vari-

ous reanalyses over the Arctic basin in the TXx, TNn, and

DTR indices. Our evaluation demonstrates that the use of

gridded data with sparse observations must be done carefully,

and reanalyses may bemore adequate since theymerge several

sources of data such as satellite data, weather stations, and

radiosonde data (Hoffmann et al. 2019; Wilson et al. 2011; Dee

et al. 2014). ASRv2 and ERA5 have shown greater ability to

reproduce observational temperature extreme patterns com-

pared to earlier products.

However, reanalyses are not without their faults and must

also be viewed with caution due to the relatively sparse ob-

servational network from which to assimilate data. Other ap-

proaches, such as the multiple reanalyses ensemble (REM),

could be a useful product for study of the polar regions (Uotila

et al. 2019; Diaconescu et al. 2017). However, Diaconescu et al.

(2017), found good performance of the REM for near-surface

temperature and hot extremes (TXx, TX90, and TN90p) but

not for other climate extreme indices [e.g., TNn, annual total

wet-day precipitation (PRCPTOT), R1mm, and R95p] over

the Canadian Arctic during 1980–2004. For instance, the poor

FIG. 4. KGE values for reanalyses in climate temperature indices. The rank is based on the

mean of KGE’s coefficients in each extreme climate index between the gridded observations

(DAYMET) and the reanalysis (ASRv2, NARR, ERA5, MERRA-2, and GMFD).
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performance (low KGE values) of REM is similar in northern

basins (e.g., the Arctic and Hudson, basins 1 and 9) for all

climate indices (see Figs. A1 and A2 of the appendix).

2) TRENDS IN TEMPERATURE INDICES

Figures 5 and 6 illustrate the decadal trends of tem-

perature indices from 2000 to 2016. The warm extremes

indices (TXx, TX90p, and TN90p) show positive trends

for the northern and western part of the study domain,

principally in the Arctic, Pacific, Yukon, Mackenzie,

Fraser, and Columbia basins (basins 1–6). For those ba-

sins, regional trends of TXx are positive between 0.07 and

0.778C decade21 (Figs. 5a and 6). The maximum magni-

tudes of TXx are found over the Fraser basin, especially for

NARR (0.828C decade21), ERA5 (0.698C decade21), GMFD

(0.488C decade21), and observations (0.458C decade21) (Figs.

5a and 6).

On the other hand, TXx (Figs. 5a and 6) and TX90 (Fig. 5d)

display west to east negative trends for basins 7 to 16, theGreat

Basin to Iceland. In general, there is reasonable agreement in

the positive trends for most products, except for GMFD that

shows a remarkable decrease in the percentage of warm nights

(TN90p; Fig. 5f) over the Pacific, Yukon, andMackenzie basins

(basins 2–4) between 20.1% to 20.7% of days decade21.

FIG. 5. Decadal trends in temperature indices calculated from the DAYMET, ASRv2, NARR, ERA5,MERRA-2,

and GMFD over 16 watersheds (Fig. 1) for the period 2000–16. The asterisks indicate a statistically significant trend at

the 90% confidence level; NA (black boxes) indicates that no data value is stored for the variable in the observation

(DAYMET).
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FIG. 6. The 2000–16 decadal trends for the (a)–(f) TXx and (g)–(l) TN10p indices calculated from observations (DAYMET) and rean-

alyses (ASRv2, NARR, ERA5 MERRA-2, and GMFD). The areas with hatching show significant trends at the 90% confidence level.
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Figures 5b, 5c, and 5e show the trends in extremes cold in-

dices (TNn, TX10p, and TN10p). Notably, TNn (Fig. 5b) dis-

plays positive trends and good agreement in spatial patterns

between observations (DAYMET) and reanalyses over the

Pacific, Mackenzie, and Iceland basins (basins 2, 4, and 16) and

downward trends in the southwest and southeast parts of the

study domain (e.g., Columbia, the Great Basin, Missouri, and

Mississippi, basins 6, 7, 11, and 12). A good match is also in-

dicated for TX10p (Fig. 5c) and TN10p (Figs. 5e and 6g–l); both

exhibit a decrease in the frequency of cold days over all wa-

tersheds. Similar results were found by Grotjahn et al. (2016)

over North America between 1950 and 2012.

The frequency of indices related to cold conditions, such as frost

days (Fig. 5g) and ice days (Fig. 5h) highlight negative trends for the

majority of basins, except for theGMFDdataset that shows amixed

pattern for ID.However, positive trends are found inGMFDfor the

ID index over the Mississippi, Lawrence, Atlantic, Greenland, and

Iceland basins (basins 12–16), with magnitudes varying between 2

and 6 days decade21 (Fig. 5h). On the other hand, GMFD show a

remarkable decrease in ID over the southwestern portion of the

domain (e.g., theColumbia,Great, andColorado basins, basins 6–8)

between22 and212 days decade21.

The annual mean temperature (2TM; Fig. 5j) shows a warming

pattern for the Arctic, Pacific, Yukon, Mackenzie, Fraser, and

Columbia basins (basins 1–6, respectively). This agrees well with

those obtained by Lindsay et al. (2014) and Simmons and Poli

(2015), who found positive trends in 2TM for theArctic region over

the 1981–2010.Also,Rapaić et al. (2015) observedpositive trends in

2TM over the Mackenzie basin and Great Basin (basin 7) from

1981 to 2010, reflecting that this pattern has continued during the

last decades, especially in northwestern watersheds. Exceptionally,

GMFD delivers opposite (negative) of the 2TM trends over the

Arctic, Pacific, and Yukon basins.

Decreasing trends are observed in theDTR index throughout

most of the domain, with most reanalyses demonstrating similar

trends in the central (e.g., 8–12) and northeastern (e.g., 15 and

16) watersheds (Fig. 5i). This could be related to the increase in

the annualmean temperature andminimum temperature, which

are greater than trends inmaximumair temperature, which has a

slightly positive trend. A similar pattern was found by Qu et al.

(2014) from observational datasets over the continental United

States from 1911 to 2012.

Temperature indices show annual warming trends during 2000–

16 over northwestern basins, and the overall trend is spatially

consistent among the reanalyses (e.g., ASRv2, NARR, andERA5)

and previous studies (Lindsay et al. 2014; Rapaić et al. 2015;

Simmons andPoli 2015;Matthes et al. 2016; Shepherd 2016;Huand

Huang 2020). However, it is interesting to note that NARR’s per-

formance in reproducing the observed trends in temperature indi-

ces over theGreat Basin and Colorado watersheds (basins 7 and 8)

is subpar compared to observations (see Figs. 5c–g and 5j). The

regional trends gradually decrease from western to eastern areas

such as theAtlantic andGreenland basins (14 and 15) inmaximum

temperature and annual mean temperature. Furthermore, Donat

et al. (2016) found that warm extremes (e.g., TN90p and TX90p)

and cold extremes (e.g., TN10p and TX10p) delivered warming

patterns over high latitudes of North America during the last six

decades (1951–2010). They used several gridded datasets between

observations (e.g., HadEX2) and reanalyses (e.g., ERA-20C and

ERA-20CM) and demonstrated that those percentiles indices show

stronger global warming in the early 2000s than the early 1980s.

b. Precipitation indices

1) PERFORMANCE EVALUATION

Figure 7 shows the performance metrics for the wet-days

index (R1mm) compared to DAYMET for 2000–16. Figure 8

displays the KGE, CORR, BR, and RV over the 14 water-

sheds. The overall performance score (KGE) shows that re-

analyses demonstrate less ability to reproducing extreme

precipitation indices over northern basins (e.g., the Arctic and

Hudson basins, basins 1 and 9) for almost all extreme precip-

itation indices (Figs. 7 and 8).

The PRCPTOT shows that over the southwest, south, and

southeast watersheds, KGE values are between 0.5 and 0.94

(Fig. 8); the best results are found over the Nelson, Missouri,

and Mississippi Rivers (basins 10–12). Nevertheless, the rean-

alyses show the lowest values over the Arctic, Pacific, Yukon,

and Hudson basins (basins 1, 2, 3, and 9, respectively).

Bromwich et al. (2016) found dry annual total precipitation

biases for Arctic stations between observations and two rean-

alyses (ASRv1 and ERA-Interim) from December 2006 to

November 2007. According to our results, the new generations

of these reanalyses (ASRv2 and ERA5) still have dry annual

biases over the Arctic and Hudson watersheds (Fig. 8c, first

column). Furthermore, similar to our results, Wong et al.

(2017) found dry bias from 2002 to 2012 over eastern Canada in

the NARR andGMFD precipitation products when compared

with the precipitation-gauge stations.

Murdock et al. (2013) found a low correlation between

gridded observations and NCEP2 Reanalysis (NCEP–DOE

AMIP-II Reanalysis) in the Canadian Columbia Basin (basin

6) for 1980–2000. It should be stressed that we found significant

correlation coefficients between 0.92 and 0.99 (Fig. 8b, line

6) over the Columbia watershed. Thus, our results deliver

strong evidence that an increase in horizontal spatial resolution

can lead to better performance in regions with complex to-

pography such as the Columbia basin located in the Rocky

Mountains.

It is important to note that northern and western basins have

low station density as well, which can induce errors in esti-

mating values of precipitation in DAYMET (Fig. 1b). The

average of the total number of rainfall observing stations be-

tween 2000 and 2016 for the Arctic, Yukon, and Hudson (ba-

sins 1, 3, and 9) are 41, 85, and 66 over areas with 2.09, 0.85, and

2.87 million km2, respectively (Figs. 1a,b). This makes the

performance comparison very difficult because of limitations

in the DAYMET dataset (Daly et al. 2008; McEvoy et al. 2014;

Timmermans et al. 2019).

Precipitation intensity indices such as the maximum 1-day

precipitation (RX1day; Fig. 8, second column), maximum

5-day precipitation (RX5day; Fig. 8, third column), very wet

days. 95th percentile (R95p; Fig. 8, fourth column), and daily

intensity index (SDII; Fig. 8, fifth column), show the lowest

values of KGE and insignificant correlations (CORR , 0.2)

over northern watersheds (e.g., the Arctic and Hudson).
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Results show that reanalyses generally underestimate RX1day

and RX5day and overestimate R95p in most watersheds

(Fig. 8c). Particularly, ASRv2 does not underestimate the ob-

servation for the RX1day index in almost all watersheds except

for the Mississippi basin (basin 12).

Similar performance is found for the frequency index R1mm

(see Fig. 7 and the sixth column of Fig. 8). Reanalyses have low

KGE values below, 0.5 over the Arctic, Mackenzie, Colorado,

Hudson, and Atlantic basins (basins 1, 4, 8, 9, and 14; see

Fig. A2 of the appendix). However, the ASRv2 and ERA5

FIG. 7. Performance metrics for the wet days (R1mm) using the DAYMET dataset as a reference over the 2000–16 period for (left)

KGE, (left center) CORR, (right center) bias ratio, and (right) RV scores for (a)–(d) ASRv2, (e)–(h) NARR, (i)–(l) ERA5, (m)–(p)

MERRA2, and (q)–(t) GMFD. The optimal value for all metrics is 1.0, indicated by dark colors on the right side of the color bars for KGE

and CORR and by the middle of the color bars for bias ratio and RV. Lighter colors illustrate weaker values.
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FIG. 8. Evaluationmetrics for precipitation indices using theDAYMETdataset as a reference over 14watersheds

(Fig. 1) for (a) KGE, (b) CORR, (c) bias ratio, and (d) RV. The period of the analysis is 2000–16. The letters on the

x axis represent ASRv2 (A), NARR (N), ERA5 (E), MERRA-2 (M), and GMFD (G). Asterisks indicate a sig-

nificant correlation at the 95% confidence level. The optimal value for all metrics is 1.0 (dark colors).
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display the greatest skill in capturing the interannual variation

of the number of wet days over the Nelson, Missouri,

Mississippi, and Lawrence basins (basins 10–13). For those

basins, the KGE scores varied between 0.56 and 0.82 and be-

tween 0.47 and 0.79 for the ASRv2 and ERA5, respectively.

Furthermore, the bias findings for the R1mm index agree with

those obtained by Diaconescu et al. (2017) over the Canadian

Arctic land areas. According to Diaconescu et al. (2017), the

bias of the R1mm index reveals a wetter pattern in almost all

reanalyses (e.g., CFSR, ERA-Interim, JRA-55, andMERRA-2)

over 25 years (1980–2004).

For consecutive wet days (CWD) and consecutive dry days

(CDD), reanalyses show KGE values between 0.4 and 0.8

(Fig. 8a), with the weakest values for the Arctic and Hudson

basins (basins 1 and 9). However, for the rest of the study

domain, reanalyses have significant correlations for CWD and

CDD (see the last two columns of Fig. 8b).

Figure 9 displays the overall performance ranking based on

KGE values for reanalyses in precipitation obtained by aver-

aging of KGE in each watershed, using the set of eight indices.

The greatest overall skill over the study domain was revealed

by ERA5, followed by ASRv2, MERRA-2, GMFD, and

NARR (see the last column of Fig. 9a). However, the rankings

over the Colorado, Missouri, and Mississippi basins (basins 8,

11, and 12) demonstrate that NARR is the best reanalysis for

capturing precipitation variability and extremes as is MERRA-2

for the Fraser watershed (basin 5; Fig. 9). The dataset choice

should bemade carefully, because each reanalysis shows varying

accuracy over each region (Beck et al. 2017; Yin et al. 2015;

Timmermans et al. 2019; Rapaić et al. 2015).

2) TRENDS IN PRECIPITATION INDICES

Figure 10 shows the decadal trends for precipitation indices

in DAYMET and reanalyses from 2000–16. Also, to illustrate

the spatial patterns of trends (Fig. 11), we chose two precipi-

tation indices (PRCPTOT and R1mm). There is a spatially

homogenous increase in annual total wet-day precipitation

index (PRCPTOT; Figs. 10a and 11a–f) over southwestern and

southern basins such as the Fraser, Columbia, Great Basin,

Colorado, Nelson, Missouri, and Mississippi watersheds (ba-

sins 5, 6, 7, 8, 10, 11, and 12, respectively) with trends varying

from 16 to 150mm decade21. The patterns of changes in

PRCPTOT are very similar to the RX1day, RX5day, and R95p

(Figs. 10b–d), showing an increase in intense events; also, ob-

servations and reanalyses display good agreement in the di-

rection and magnitude of the trend over the southwestern part

of the domain, especially in the Columbia, Great Basin,

Colorado, Nelson, and Missouri basins.

The PRCPTOT index displays a nonhomogenous pattern

that was found for northern watersheds (e.g., the Arctic,

Mackenzie, and Hudson basins, basins 1, 4, and 9; Figs. 11a–f.

Rapaić et al. (2015) and Yang et al. (2019) found similar results

for the Canadian Arctic from 1981 onward and all of Canada

during the 1950–2012 period. The limited agreement in wet/dry

patterns among observations and reanalyses can be explained

by the short period for trend analysis and uncertainties in

gridded precipitation observations (Diaconescu et al. 2017;

Rapaić et al. 2015).

The SDII index (Fig. 10e) delivers better agreement be-

tween gridded observational data and reanalyses, and an in-

crease in daily intensity occurs for all basins except for the

Arctic andMackenzie basins (basins 1 and 4) where the trend is

not clear. According to Booth et al. (2012), SDII is an indicator

of the intensification of the hydrologic cycle; in our study, the

upward trend in the SDII index matches with the warming

pattern shown in several temperature indices (e.g., TN10p,

TX10p, FD, and ID).

The number of wet days (R1mm; Fig. 10f) shows an increase

in most datasets over southwest parts and central parts of the

domain (e.g., the Columbia, Great Basin, Colorado, Nelson,

and Missouri watersheds, basins 6, 7, 8, 10, and 11), ranging

between 2 and 18 days decade21. Also, consecutive wet days

(CWD; Fig. 10g) delivered negative trends in the Pacific,

Mackenzie, Hudson, Nelson, Lawrence, and Atlantic basins

(basins, 2, 4, 9, 10, 13, and 14). On the other hand, the Arctic,

Pacific, Yukon, and Hudson watersheds (basins 1, 2, 3 and 9),

as well as Greenland and Iceland (basins 15 and 16) have in-

creases in consecutive dry days (CDD; Fig. 10h).

FIG. 9. KGE values for reanalyses in climate precipitation indices. The rank is based on the

mean of KGE’s coefficients in each extreme climate index between the gridded observations

(DAYMET) and the reanalysis (ASRv2, NARR, ERA5, MERRA-2, and GMFD).
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We conclude the temperature trends deliver better consis-

tency in terms of the trend signals across all datasets than those

trends in precipitation indices. Nevertheless, the GMFD

dataset performed poorly in terms of capture the observed

trends for intensity/frequency indices (Figs. 10b–h). Notably,

we have demonstrated an increase in intensity and frequency

of extreme precipitation events during 2000–16 over south-

western and southern parts of the study domain, especially

over the Columbia, Great Basin, Colorado, Nelson, Missouri,

and Mississippi watersheds (basins 6, 7, 8, 10, 11, and 12).

c. Extreme winters over the North American Arctic region

Having established the ability of ASRv2 and ERA5 to re-

produce extreme climate indices, we investigated their

monthly maximum (TXx), minimum (TNn), total wet-day

precipitation (PRCPTOT), and number of wet days (R1mm)

related to theNorthAtlantic Oscillation (NAO) and theArctic

Oscillation (AO) for 2000–16 (Figs. 12–14). While the NAO

and AO are significantly correlated (CORR 5 0.86; p , 0.01)

during winter [December–March (DJFM)] over the 2000–16

period, the negative and positive phases of the AO/NAO

produce different responses in the climate extremes across the

Arctic (Wanner et al. 2001; Cohen et al. 2010; Dai and Tan

2017; Luo et al. 2020). It is important to note that this exercise

aims not to create a new analysis based on a seasonal scale

but to evaluate the capacity of these reanalyses to estimate

ETCCDI indices during extreme winters. Further details about

North American extreme temperature and precipitation

events and related large-scale meteorological patterns are

found in Grotjahn et al. (2016) and Barlow et al. (2019).

The DJFM period was selected to maximize the influence of

NAO/AO on the North American Arctic climate (Kunkel and

Angel 1999; Ning andBradley 2015; Rivière andDrouard 2015;

Dai and Tan 2017). The NAO and AO are generated by pro-

jecting the lower-level geopotential height anomalies onto the

empirical orthogonal function loading vectors of the NAO and

AO mode, respectively, details of which can be found online

(https://www.cpc.ncep.noaa.gov).

The evaluation considers temperature and precipitation re-

sponses to NAO (AO) indices larger than 0.71 (0.96) standard

FIG. 10. Decadal trends in precipitation indices calculated from the DAYMET, ASRv2, NARR, ERA5,

MERRA-2, and GMFD over 16 watersheds (Fig. 1) for the period 2000–16. The asterisks indicate a statistically

significant trend at the 90% confidence level; NA (black boxes)means that no data value is stored for the variable in

the DAYMET (gridded observation).
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FIG. 11. The 2000–16 decadal trends for the (a)–(f) PRCPTOTand(g)–(l)R1mm indices calculated fromObservations (DAYMET) and

reanalyses (ASRv2, NARR, ERA5 MERRA-2, and GMFD). The areas with hatching show significant trends at the 90% confi-

dence level.
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deviations from the long-term means (1950–2016). We com-

posited the winters of 2000, 2012, 2014, 2015, and 2016 ac-

cording to the positive phases of NAO and the 2001, 2006,

2010, and 2013 winters for the negative phases of AO. Note the

lack of significant NAO negative events during the period (see

Fig. A3 of the appendix). The criteria used to determine in-

tense NAO/AO events ignored the presence of NAO (AO)

negative (positive) values to illustrate the most negative and

FIG. 12. Composite anomalies of TXx and TNn during extremes winters (DJFM) from 1999/2000 to

2015/16 (no data for December 1999) in (a)–(f) the positive phase of the NAO and (g)–(l) the negative

phase of the AO.
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positive magnitudes recorded in the NAO/AO series (see the

asterisks in appendix Fig. A3).

Figures 12a–f show that extreme winters driven by the posi-

tive phase of the NAO typically result in below-average tem-

peratures across northeastern North America and Greenland

and above-average temperatures across the United States in

response to changes in atmospheric flow (Hurrell et al. 2003;

Hurrell and Deser 2009; Ning and Bradley 2015). Enhanced

northerly winds on the backside of a strengthened Icelandic

low induce northerly wind anomalies that produce colder air

intrusions across northeast North America, while a stronger

subtropical high in the Atlantic leads to southerly, clockwise

flow across much of the United States and western North

America. Note the strong agreement between ASRv2 and

ERA5 when compared with DAYMET.

Figure 13 shows that the watershed-averaged DJFM anoma-

lies support Fig. 12, with strong positive anomalies in TXx and

TNn over the Yukon, Mackenzie, Great Basin, Colorado,

Nelson,Missouri, andMississippiwatersheds (basins 3, 4, 7, 8. 10,

11, and 12, respectively) and negative anomalies over the

Hudson, Atlantic, and Greenland basins (basins 9, 14, and 15;

Figs. 12 and 13a,c). In some parts of the Greenland, Lawrence

FIG. 13. Composite of the extreme winters (DJFM) over 16 watersheds (Fig. 1) for the (left) North Atlantic

Oscillation (NAO) and (right) Arctic Oscillation (AO) for (a),(b) TXx; (c),(d) TNn; (e),(f) PRCPTOT; and (g),(h)

R1mm. Error bars represent the standard deviations of the mean in DAYMET, ASRv2, and ERA5.
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(basin 13), and Atlantic watersheds, TNn decreases by up to

2.58C during positive NAO winters (Figs. 12d–f).

Insofar as temperatures are concerned, differences are in-

duced by eachmode of climate variability (Figs. 12 and 13). For

instance, positive NAO increases TXx and TNn in the western

basins (basins 2–8 and 10–13), while the negative AO induces

the opposite, including anomalously cold patterns of TXx

over the same watersheds and especially over the central and

FIG. 14. Composite anomalies for PRCPTOT and number of wet days (R1mm) during extremes

winters (DJFM) from 1999/2000 to 2015/16 (no data for December 1999) in (a)–(f) the positive phase of

the NAO and (g)–(l) the negative phase of the AO.
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southern basins. Like the NAO, a negative AO pattern reflects

a weakened westerly flow across the Northern Hemisphere

Arctic, allowing colder air to penetrate deeper into the lower

latitudes. Interestingly, however, a negative AO also delivers

anomalously positive TNn temperatures over much of the

domain, matching the same response in TNn to positive NAO.

The reduction in the extreme minimum temperature (positive

TNn anomalies) is similar to one presented by Wettstein and

Mearns (2002), who describe larger diurnal temperature dif-

ference under positive AO conditions. Our results indicate

smaller diurnal temperatures differences over much of the

western and southern stretches of the domain for the AO

phase (Figs. 12g–l). We have long known about the regional

impacts of the AO on climate variability (Thompson and

Wallace 1998, 2000a,b), but a recent modeling study points to

changes in the Northern Hemisphere storm tracks during

winter under Arctic amplification (Wang et al. 2017). Their

results suggest a weakening of the North Atlantic storm track

leads to anomalous equatorward moisture flux that enhances

the warming upstream due to changes in downward infrared

radiation. Increased moisture is likely to lead to warmer

overnight low temperatures, consistent with the TNn results

shown in Fig. 12.

Turning to changes in precipitation, the positive phase of the

NAO is associated with increased precipitation (PRCPTOT;

Figs. 13e and 14a–c), with positive anomalies over the Fraser,

Columbia, northwestern Lawrence, northeastern Greenland,

and Iceland basins (basins 5, 6, 13, 15, and 16). However, there

is reduced precipitation over the Great Basin (basin 7), eastern

Hudson (basin 9), eastern Lawrence, Atlantic (basin 14), and

western Greenland watersheds (Figs. 13e and 14a–c).

Conversely, NAO positive events are not shown to have a

strong influence on R1mm (Figs. 13g and 14d–f). This indicates

no significant changes in the number of wet days during ex-

tremes winters, except for the western part of Greenland,

which shows a reduction in precipitation both in intensity

and frequency. These reductions in total winter precipitation

over the eastern domain are consistent with a strengthened

Icelandic low under positive NAO conditions, one that induces

stronger northerly winds and reduced northward moisture flux

into this region.

The negative phase of AO delivers similar mean conditions

in all watersheds across DAYMET, ASRv2, and ERA5

(Figs. 13f,h and 14g–l). Still, dry conditions are noted in the

western domain (e.g., watersheds 4–7) and and the east coast

of Greenland and in Iceland (watersheds 15 and 16).

Interestingly, wetter conditions in PRCPTOT and R1mm are

presented during negative AO events over northeastern parts

of the Hudson (basin 9) and Atlantic (basin 14), and in the

central region of Greenland, with homogeneous spatial vari-

ability indicated by Figs. 13f and 13h.

In general, compared to observed gridded data (DAYMET),

both ASRv2 and ERA5 show similar precipitation patterns.

However, extreme precipitation indices for the northern do-

main of the Yukon basin (basin 4) and northwestern part of the

Arctic basin (basin 1) show larger positive (negative) anoma-

lies in the NAO (AO) phase for DAYMET compared to

ASRv2 and ERA5 (Figs. 14 and 13). These differences may be

associated with the scarcity of stations or the regionalization of

precipitation within DAYMET.

4. Discussion and conclusions

We have compared the performance of the two regional

(ASRv2 and NARR) and three global reanalyses (ERA5,

MERRA-2, and GMFD) with DAYMET (a gridded obser-

vationally based dataset) in reproducing extreme climate in-

dices of temperature and precipitation over North America

including the Arctic. The comparison was performed at a 0.258
horizontal spatial resolution during the 17-yr ASRv2 period

(2000–16) using the Kling–Gupta efficiency, which is a com-

bination of the three components, namely correlation, bias

ratio, and variability.

Observations and reanalyses show a consistently warm

pattern with a decrease in frequency and intensity of cold ex-

tremes over most of the study area. Cold days, cold nights, frost

days, and ice days have decreased during the last two decades.

These changes in cold extremes are linked to changes in win-

tertime atmospheric circulation and synoptic conditions (e.g.,

Wu 2017; Papritz 2020). Furthermore, the hottest day, warm

days, and warm nights have increased over the northern and

western parts of the domain, especially across the Arctic,

Pacific, Yukon, Mackenzie, Fraser, and Columbia watersheds

(basins 1–6 in Fig. 1). Not only do warmer days increase the

impact on sea ice loss (Bliss et al. 2019; Brennan et al. 2020;

Peng et al. 2020), with a positive feedback for further envi-

ronmental changes in the Arctic, but they also increase the

likelihood and intensity of wildfires across theArctic landscape

(Wang et al. 2020). These changes in climate extremes

have significant impacts on Arctic residents (e.g., Vogel and

Bullock 2020).

The implication of the increasing warmth is reflected in the

increase of daily intensity precipitation over the domain as

water vapor provides an important passive link between a

warming yet wetter world (Bengtsson 2010). Furthermore, the

increase in intensity indices is more consistent in RX1day,

RX5day, and R95p, which may potentially produce locally

adverse effects (e.g., storms and floods), especially in the

Columbia, Great Basin, Colorado, Nelson, and Missouri wa-

tersheds (basins 6, 7, 8, 10, and 11). Also, temperature extremes

over Greenland have been linked to the occurrence of clouds

as well (Gallagher et al. 2020), whose variability is directly

linked to moisture availability.

The overall comparison reveals that reanalyses demonstrate

better skill in reproducing temperature than precipitation

climate indices. This is especially true for precipitation mag-

nitude (PRCPTOT), intensity (RX1day and RX5day), fre-

quency (R1mm), and duration (CDD and CWD) over

northern parts of the domain including the Arctic and Hudson

basins (basins 1 and 9). Evaluating these regions is still a

challenge because of uncertainties associated with lower gauge

coverage and measurement inconsistency.

ASRv2 andERA5 performed better thanNARR,MERRA-2,

andGMFD compared toDAYMET. However, the best choice

in capturing the spatiotemporal extreme precipitation patterns

for the Colorado,Missouri, andMississippi basins (basins 8, 11,
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and 12) is the NARR and for the Fraser basin (basin 5) is

MERRA-2. In most cases, ASRv2 and ERA5 appear to be

accurate representations for North America and the Arctic.

Both are new reanalyses with high spatial (ASRv2 with 15 km

and ERA5 with ;0.258) and temporal (ASRv2 with 3-hourly

and ERA5 with 1-hourly) resolutions. Despite these results,

future studies should further investigate the impacts of hori-

zontal resolution of the reanalyses on the estimation of climate

extremes, principally in themiddle-to-high latitudes and basins

with a complex topography (e.g., the Pacific watershed).

Using ASRv2 and ERA5, it has been found that the

North Atlantic (NAO) and the Arctic Oscillation (AO)

exert distinct influences on extreme climate indices. The

evaluation of both the NAO and AO is important because

the NAO impacts more strongly the eastern part of the

North American pan-Arctic. In contrast, the AO displays a

FIG. A1. KGE values for reanalyses (ASRv2, NARR, ERA5, MERRA-2, and GMFD) and the ensemble mean

of reanalyses (REM) in climate temperature indices. The boxplot displays the 25th, 50th (median), and 75th

percentiles for each dataset as well as the mean values (plus signs). The symbols next to each boxplot represent the

KGE coefficients for each basin (Fig. 1).
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large influence also on the western part. Our results show that

available reanalyses indicate similar patterns of climate ex-

tremes (TXx, TNn, PRCPTOT, and R1mm) in larger positive

(negative) excursions of the NAO (AO) index, which supports

their use where uncertainties related to sparse coverage of

measurement of the climatic variables are present (e.g., the

Arctic, Greenland, and Iceland basins, basins 1, 15, and 16).

In short, results here provide a guide as to the relative

performance of regional/global reanalyses for the community

of climate modelers and observational scientists to assess the

robustness of reanalysis datasets in the North American

Arctic. This study has also synthesized the recent amplified

warming across high-latitude North America, helping to quan-

tify changes in extremes so that they may be linked to the im-

pacts experienced by the people and environment of this region.
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APPENDIX

KGE and Index Values

Figures A1 andA2 give the KGE values for the temperature

and precipitation indices, respectively. Boxplots are given

for each of the 14 watershed basins. Figure A3 provides the

FIG. A2. As in Fig. A1, but for climate precipitation indices.
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North Atlantic Oscillation and Arctic Oscillation indices for

the winters from 1999/2000 to 2015/16.
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