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ABSTRACT

In comparison to the Tatsumi’s spectral method, the harmonic-Fourier spectral method has two major advan-
tages. 1) The semi-implicit scheme is quite efficient because the solutions of the Poisson and Helmholtz equations
are readily derived. 2) The lateral boundary value problem of a limited-area model is easily solved. These
advantages are the same as those of the spherical harmonics used in global models if the singularity at the pole
points for a globe is considered to be the counterpart of the lateral boundary condition for a limited region.

If a limited-area model is nested in a global model, the prediction of the limited-area model at each time step
is the sum of the inner part and the harmonic part predictions. The inner part prediction is solved by the double
sine series from the inner part equations for the limited-area model. The harmonic part prediction is derived
from the prediction of the global model. An external wind lateral boundary method is proposed based on the
basic property of the wind separation in a limited region. The boundary values of a limited-area model in this
method are not given at the closed boundary line, but always given by harmonic functions defined throughout
the limited domain. The harmonic functions added to the inner parts at each time step represent the effects of
the lateral boundary values on the prediction of the limited-area model, and they do not cause any discontinuity
near the boundary.

Tests show that predicted motion systems move smoothly in and out through the boundary, where the predicted
variables are very smooth without any other boundary treatment. In addition, the boundary method can also be
used in the most complicated mountainous region where the boundary intersects high mountains. The tests also
show that the adiabatic dynamical part of the limited-area model very accurately predicts the rapid development
of a cyclone caused by dry baroclinic instability along the east coast of North America and a lee cyclogenesis
case in East Asia. The predicted changes of intensity and location of both cyclones are close to those given by
the observations.

1. Introduction

Spectral methods have been used successfully and
extensively in global atmospheric models (Bourke 1974;
Hoskins and Simmons 1975; Baede et al. 1979; etc.).
In comparison to finite-difference methods, spectral
methods can give very accurate results with relatively
few degrees of freedom. There are almost no compu-
tational dispersion and no systematic phase errors in
wave advection with spectral methods. Because of the
difficulty in choosing appropriate basis functions having
the same advantages as the spherical harmonics used in
global models, spectral methods have not been fre-
quently used in limited-area models. Some efforts have
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been made to overcome this difficulty by Tatsumi (1986)
and Fulton and Schubert (1987a,b). Modified double
Fourier series and a Chebyshev spectral method are used
by them, respectively. Recently, a spectral method also
has been studied by Haugen and Machenhauer (1993),
who use Fourier series with cyclic boundary conditions,
and by Juang and Kanamitsu (1994), who use a spectral
method similar to that of Tatsumi (1986) to predict de-
viations from a global model in a regional model.

Tatsumi (1986) introduced two nonorthogonal addi-
tional terms into the Fourier series to solve the time-
dependent lateral boundary conditions. The sinusoidal-
subtracted sine–cosine series are useful for computing
the spatial derivatives, but do not have the same con-
venience for solving the Poisson and Helmholtz equa-
tions as the spherical harmonic series used in global
models. Based on a comparison between the spherical
harmonic series and Tatsumi’s (1986) spectral method
used in global and limited-area models, respectively, the
spherical harmonic series used in global models has two
major advantages over Tatsumi’s (1986) spectral meth-
od. 1) There is no singularity at the pole points in the
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spectral global model. If the singularity at the pole
points of a globe is considered as the counterpart of the
lateral boundary condition of a limited region, it means
that the lateral boundary conditions for the model are
dealt with easily and naturally. 2) In the spectral global
model, it is easier to implement the semi-implicit time-
integration scheme, which involves very few extra com-
putations at each time step, but generally increases the
size of the time step by a factor of 6 compared to that
used in the explicit scheme. This is because spherical
harmonics are the eigenfunctions of the Laplacian op-
erator and the solutions of the Poisson and Helmholtz
equations can be derived easily.

Recently, a spectral method, which is called a har-
monic-Fourier (hereafter referred to as H-F), or a har-
monic-sine and cosine series expansion proposed by
Chen and Kuo (1992a,b) (hereafter referred to as CK92a
and CK92b), has been used for the spectral represen-
tation of a variable on a rectangular domain. It is proved
in CK92a that the computation for the Laplacian op-
erator and the derivation of the solutions for the Poisson
and Helmholtz equations are very straightforward using
the H-F spectral method. Thus, the semi-implicit scheme
will be more efficient in this spectral method than in
the modified double Fourier series used by Tatsumi
(1986). In addition, the H-F spectral method has another
advantage in that the lateral boundary problem can be
solved easily and naturally.

Lateral boundaries are an intrinsic feature of a lim-
ited-area model. If a limited-area model is nested in a
global model with a ‘‘one-way’’ influence method dur-
ing time integration, the boundary values obtained from
the global model may be incompatible with the variables
within the region predicted by the limited-area model.
In principle, there are two approaches to dealing with
this lateral boundary value problem.

One is to specify the boundary values in such a man-
ner as to make the problem well posed. For example,
Charney (1962) showed that an appropriate set of
boundary conditions for the barotropic vorticity equa-
tion is to specify the normal velocity everywhere on the
boundary and potential vorticity at inflow points. The
complication associated with this approach accrues for
the unmodified system of the governing equations. An-
alytic results of Oliger and Sundstrom (1978) indicate
that the initial boundary value problem for the hydro-
static primitive equations is ill posed with any specifi-
cation of pointwise boundary conditions. The essential
cause of the ill posedness might be eliminated by ap-
plying boundary conditions to each vertical mode in-
dependently (Hack and Schubert 1981). An alternate
reduced system based on symmetric hyperbolic partial
differential equations is found to be well posed (Brown-
ing and Kreiss 1986). It should be pointed out that this
approach is further complicated by discretization
schemes and errors in the boundary data. It seems dif-
ficult to solve all the computational boundary problems
for a limited-area model by using only this approach.

The second approach is used in the case that the prob-
lem with the prescribed boundary values is not well
posed. To reduce the amplitude of spurious solutions
near the boundary due to ill-posed boundary conditions,
it is necessary to employ a lateral boundary treatment
that can effectively reduce lateral boundary noise during
the integration. These methods include the insertion of
a highly diffusive layer contiguous to the boundary
(Benwell et al. 1971), a divergence control method
(Okamura 1975), a method of modification of the ten-
dencies at the boundary (Kesel and Winninghoff 1972;
Perkey and Kreitzberg 1976), the boundary relaxation
method (Davies 1976), etc. In the limited-area spectral
models of Tatsumi (1986) and Juang and Kanamitsu
(1994), the boundary relaxation method is used to re-
duce the lateral boundary noise.

In this paper, besides testing the harmonic-sine spec-
tral method, we will present a new method for specifying
the lateral boundary values of limited-area models. This
method is also used in the case that the problem with
the prescribed boundary values is not well posed.

From a global perspective, a limited region R defined
for a limited-area model is only a part of the global
surface. The other part of the global surface outside the
region R is referred to as the external region Q. From
the global perspective, the wind field in the limited re-
gion R depends not only upon the vorticity and diver-
gence within the region R, but also on those of the
external region Q.

Based on the studies of CK92a and Chen et al. (1996),
the wind field in a limited area can be separated into two
parts. One is the internal wind that depends only upon
the vorticity and divergence within the region R. No
matter how the vorticity and divergence vary in the ex-
ternal region, the internal wind does not vary. The other
part is the external wind that depends only on the vorticity
and divergence outside the region R. No matter how the
vorticity and divergence vary within the region R, the
external wind does not change. This is the basic property
of the above wind separation in a limited region.

If a limited-area model is formulated in terms of the
vorticity and divergence equations (instead of the mo-
mentum equations) and is nested in a global model by
the one-way method, based on the basic property of
wind separation shown above, only the internal wind in
the limited area can be predicted from the vorticity and
divergence equations of the limited-area model; the ex-
ternal wind in the limited area must be derived from
the prediction of the global model. The total wind in
the limited region at each time step is the sum of the
internal and external winds predicted by the two models,
respectively. That the external wind is added to the in-
ternal wind at each time step represents the effect of
the lateral boundary values predicted by the global mod-
el on the wind prediction of the limited-area model. This
is the basic idea for solving the lateral boundary problem
of a limited-area model.

In addition to the wind field, a similar idea can also
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be used to solve the lateral boundary values for scalar
variables, such as geopotential height, temperature, and
surface pressure. Based on CK92a and CK92b, a scalar
variable is separated into harmonic and inner parts. The
two separations for a scalar variable and wind vector
are different. The harmonic and inner parts are used to
express the separation of scalar variables, such as the
streamfunction, velocity potential, and geopotential
height, etc., but the external and internal winds are uti-
lized to denote the separation of the wind vector (Chen
et al. 1996).

Because the boundary value of a variable for the har-
monic-sine series expansion is simpler than that of the
harmonic-cosine one, only the harmonic-sine series ex-
pansion is used in this paper. The equations for scalar
variables of the limited-area model are all transformed
into the equations of their inner parts, whose boundary
values are homogeneous. Thus, the inner part equations
of the limited-area model can easily be solved by the
double sine series.

The harmonic parts of the scalar variables in the lim-
ited region are derived from the prediction of the global
model. The total prediction of these scalar variables in
the limited region at each time step is the sum of the
inner and harmonic parts. This is a simple method to
prescribe the lateral boundary values of scalar variables.

The external wind and the harmonic parts of scalar
variables are all the harmonic functions. In this boundary
method, the lateral boundary value of a variable is not
just given at a closed line of the boundary, but it is always
given by a harmonic function defined in the whole limited
domain. Because the derivatives of a harmonic function
up to second order are continuous, the harmonic function
must be very smooth in the region up to the boundary.
The harmonic function added to the inner part cannot
cause any discontinuity near the boundary. Thus, the new
boundary method is quite different from some other ar-
tificial pragmatic techniques (Benwell et al. 1971; Oka-
mura 1975; Davies 1976) mentioned above, and it has a
relatively strong theoretical basis, especially for the wind
field. Tests of this boundary method will show that the
predicted motion near the boundary is smooth without
any other boundary treatment.

It should be noted that the primary appeal of a spectral
method is its high accuracy. Finite-difference discreti-
zations give algebraic convergence, while a properly
formulated spectral method gives exponential conver-
gence. Recently, Kuo and Williams (1992) used a simple
example in one-dimensional space to study the accuracy
of regional spectral methods and found that Tatsumi’s
(1986) spectral method does not possess exponential
convergence. In this paper, we do not explore the ex-
ponential convergence of the H-F spectral method, but
we want to show that the semi-implicit time integration
scheme and the external wind lateral boundary method
are much more efficiently and conveniently imple-
mented by the H-F spectral method than by Tatsumi’s
spectral method.

The paper is organized as follows. The governing
model equations formulated in terms of the vorticity
and divergence equations are shown in section 2. The
vertical finite-difference representation of the model
equations is discussed in the appendix. The equations
for the streamfunction, velocity potential, and gener-
alized geopotential are presented in section 3. All of the
model equations are transformed into their inner parts
in this section. The solution of the equations in the
vertical mode space and their semi-implicit time inte-
gration scheme are discussed in section 4. Section 5
outlines the external wind lateral boundary method for
a limited-area model. The basic idea of how the one-
way and two-way interactive procedures for a limited-
area model nested in a global model are implemented
based on the external wind boundary method is dis-
cussed in this section. Tests of predictions of the ex-
plosive development of a cyclone over the east coast of
North America and a lee-cyclogenesis case in East Asia
computed by the H-F spectral limited-area model with
the external wind lateral boundary method are discussed
in section 6.

2. The basic equations

The vertical coordinate s is defined by

p
s 5 , (2.1)

p*

where p*(x, y, t) is the surface pressure. The symbols
are defined as usual.

The momentum equation is

]V ]V•5 2( f 1 z)k 3 V 2 s
]t ]s

1
2 ¹ f 1 V ·V1 22

2 RT¹ lnp 1 P 1 K . (2.2)V V*

The thermodynamic equation is

]T ]T RT•5 2V ·¹T 2 s 1 v 1 P 1 K . (2.3)T T]t ]s C Pp

The continuity equation is
•] lnp ]s* 5 2V ·¹ lnp 2 ¹ ·V 2 . (2.4)*]t ]s

The continuity equation of water vapor is

]q ]q•5 2V ·¹q 2 s 1 P 1 K . (2.5)q q]t ]s

The hydrostatic equation is

]f RT
5 2 . (2.6)

]s s

It is assumed that
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f 5 f 1 f 9 (2.7)0

T 5 T (s) 1 T90

5 T (s) 1 [T(x, y, s, t) 2 T (s)], (2.8)0 0

where f0 is the averaged value of Coriolis parameter in
the integration region and f9 is its deviation. Equation
(2.8) means that the temperature field is divided into a
basic state portion, T0(s), that depends only on sigma
and is statically stable, and a deviation from the basic
state, T9.

The terms PU, PV, PT, and Pq can be written as

m ]
P 5 2 J (2.9)U up ]s*

m ]
P 5 2 J (2.10)V vp ]s*

1
P 5 Q 1 Q 1 QT R L D5Cp

g ] ]
2 J 2 C T(d 2 1) J (2.11)s pd q 6[ ]p ]s ]s*

g ]
P 5 S 2 J . (2.12)q q qp ]s*

In (2.9)–(2.12), Ju, Jv, Js, and Jq represent net parame-
terized vertical fluxes of momentum, dry static energy
(CpT 1 f), and moisture, and they include fluxes due
to convection and boundary layer turbulence. Here, m
is the map scale factor, and QR, QL, and QD represent
heating due, respectively, to radiation, internal phase
changes (including evaporation of precipitation), and the
internal dissipation of kinetic energy associated with the
PU and PV terms. Here, Sq denotes the rate of change of
q due to precipitation.

The terms Ku, Kv, KT, and Kq represent the influence
of unsolved horizontal scales. Their treatment differs
from that of PU, PV, PT, and Pq terms in that it does not
involve a physical model of subgrid-scale processes, but
rather a numerically convenient form of scale selective
diffusion of a magnitude determined empirically to en-
sure realistic behavior of resolved scales.

a. The vorticity and divergence equations

The vorticity and divergence equation are derived
from (2.2) and written in the form

]z
2 25 2f d 1 m V 1 m K (2.13)0 adv z]t

]d
2 2 25 f z 2 m ¹ (f 1 RT lnp ) 1 m D0 0 adv*]t

2 2 22 m ¹ E 1 m K , (2.14)d

where

] v ] u
2z 5 k ·¹ 3 V 5 m 2 (2.15)1 2 1 2[ ]]x m ]y m

] u ] v
2d 5 ¹ ·V 5 m 1 (2.16)1 2 1 2[ ]]x m ]y m

u ]( f 9 1 z) v ]( f 9 1 z)
V 5 2 1adv [ ]m ]x m ]y

] ]F ]Fv u2 ( f 9 1 z) 1 2 (2.17)
2m ]x ]y

v ]( f 9 1 z) u ]( f 9 1 z)
D 5 2adv m ]x m ]y

z ]F ]Fu v1 ( f 9 1 z) 1 1 (2.18)
2m ]x ]y

2 2u 1 v
E 5 (2.19)

2

and

] u ] lnp PU*•F 5 2s 2 RT9 1 (2.20)u 1 2]s m ]x m

] v ] lnp PV*•F 5 s 2 RT9 1 . (2.21)v 1 2]s m ]y m

The main parts of Vadv and Dadv are the horizontal
and vertical advection, so that Vadv and Dadv are referred
to as the vorticity and divergence advection terms, re-
spectively. The terms Kz and Kd are derived from Ku

and Kv, and they represent the influence of unsolved
horizontal scales on vorticity and divergence, respec-
tively.

b. The vertical finite-difference form of the equations

Let U, V, V, and D be

u v
U 5 , V 5 ,

m m

z d
V 5 D 5 . (2.22)

2 2m m

It is assumed that

m2 5 1 (m2)9,2m0 (2.23)

where is the averaged value of m2 over the integration2m0

region and (m2)9 is its deviation. The vertical distribution
of variables is shown in Fig. 1. Based on the vertical
difference form derived in the appendix, the continuity
equation (A.5) can be rewritten as

] lnp* 21 m P D 5 P , (2.24)0 adv]t

where
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FIG. 1. The vertical distribution of the variables.

FIG. 2. (a) The closed region R, (b) the open region R without
boundary, and (c) the boundary of the region R.

D1

D2

D 5 · ,F G·
Dn

P 5 (Ds , . . . , Ds , . . . , Ds ). (2.25)1 k N

If the basic equations are written in column-vector form,
(A.40) and (A.43) become

]V
1 f D 5 V 1 K (2.26)0 adv z]t

and

]D
22 f V 1 ¹ (f 1 RT lnP )0 0 *]t

25 D 2 ¹ E 1 K . (2.27)adv d

The thermodynamic equation (A.33) is rewritten as

]T
21 m FD 5 T 1 P 1 K , (2.28)0 adv T T]t

where Tadv becomes

2T 5 T 1 T 1 T 2 (m )9FD. (2.29)adv hor ver spa

The hydrostatic equation (A.28) is

f 5 f 1 RBT. (2.30)*

Substituting it into (2.27), we have

]D
22 f V 1 ¹ (f 1 RBT 1 RT lnP )0 v 0* *]t

25 D 2 ¹ E 1 K . (2.31)adv d

The equation for the mixing ratio (A.45) is

]q
5 Q 1 P 1 K . (2.32)adv q q]t

The equations (2.24), (2.26), (2.28), (2.31), and (2.32)
are the basic equations for the variables lnp*, V, T, D,
and q.

3. The inner part equations of the model

a. The separation of the scalar variables and wind

The limited-area model is defined in a closed region
R shown by Fig. 2a. The region shown by Fig. 2b is
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an open region without the boundary, and it is also
referred to as interior of R or within the region R. The
closed line S shown by Fig. 2c is the boundary of region
R. Based on the harmonic-sine series expansion
(CK92a), a scalar variable A, such as temperature or
geopotential height, defined on closed R can be divided
into the harmonic and inner parts, A 5 Ai 1 Ah, where
the harmonic part Ah satisfies the Laplace equation and
Dirichlet boundary condition

2¹ A 5 0, in interior of R,h (3.1)5A z 5 A(S), at the boundary S,h S

and the inner part Ai is determined by Ai 5 A 2 Ah.
The inner part Ai vanishes at the boundary S automat-
ically and can be expanded in a double sine series. The
streamfunction and velocity potential on closed R are
separated by

c 5 ch 1 ci, x 5 xh 1 xi, (3.2)

where the inner parts ci and xi satisfy the Poisson equa-
tions

2 2¹ c 5 V, ¹ x 5 D, in interior of R,i i (3.3)5c z 5 0, x z 5 0, at the boundary S,i S i S

and they are easily solved by the double sine series.
The internal wind on closed R is defined by

]c ]x ]c ]xi i i iU 5 2 1 , V 5 1 , (3.4)I I]y ]x ]x ]y

and the external wind on closed R is derived by

UE 5 U 2 UI, VE 5 V 2 VI. (3.5)

The harmonic parts, ch and xh, fulfill the Laplace equa-
tions

¹2 ch 5 0, ¹2 xh 5 0 (3.6)

in the interior of R, and at the boundary S they satisfy

]c ]xh h2 1 5 U z ,E S1 2)]y ]x
S

]c ]xh h1 5 V z . (3.7)E S1 2)]x ]y
S

The separation of wind field into the internal and ex-
ternal winds based on (3.4) and (3.5) is different from
that of scalar variables.

Because the inner parts are expressed by the double
sine series, ¹2ci and ¹2xi at the boundary S become

¹2cizS 5 0, ¹2xizS 5 0. (3.8)

If the vorticity and divergence need to be computed on
closed R from the inner parts, they can be derived by

¹2ci 1 VzS 5 V, ¹2xi 1 DzS 5 D, (3.9)

where the symbol VzS is defined on closed R and denoted
by

V, at the boundary S,
V z 5 (3.10)S 50, in interior of R.

To avoid discontinuity of (3.9) at the boundary, the fol-
lowing method can be used. The vorticity and diver-
gence are separated into their harmonic and inner parts
expressed by

V 5 Vi 1 Vh, D 5 Di 1 Dh, (3.11)

where Vh and Dh satisfy Laplace equations ¹2Vh 5 0
and ¹2Dh 5 0 with the Dirichlet boundary values VhzS
5 VzS and DhzS 5 DzS, respectively. Introducing two
new variables, ch,i and xh,i, they are a portion of the
inner parts of streamfunction and velocity potential, re-
spectively, and they satisfy the Poisson equations

¹2ch,i 5 Vh, ¹2xh,i 5 Dh, (3.12)

with zero Dirichlet boundary value. Based on (3.11),
the inner parts Vi and Di can be derived by Vi 5 ¹2ci

2 ¹2ch,i and Di 5 ¹2xi 2 ¹2
h,i. Thus, the vorticity and

divergence on closed R computed from the inner parts
are expressed by

¹2(ci 2 ch,i) 1 Vh 5 V, ¹2(xi 2 xh,i) 1 Dh 5 D.
(3.13)

If an equation A 5 B is satisfied on closed R, then
by applying the harmonic-sine spectral method (3.1) to
both sides and based on the uniqueness of the harmonic
function for the Dirichlet boundary value, it follows that
the following equations

Ah 5 Bh and Ai 5 Bi (3.14)

are satisfied on closed R.

b. The governing equations of the inner parts of the
streamfunction and velocity potential

Let us introduce two variables cadv,i and xadv,i, which
satisfy the following equations:

¹2cadv,i 5 Vadv, ¹2xadv,i 5 Dadv, (3.15)

with the homogeneous Dirichlet boundary values. The
variables cadv,i and xadv,i are referred to as advection
variation rates of the inner parts of the streamfunction
and velocity potential, respectively.

To simplify notations, let F denote a finite Fourier
sine transform operator in the two-dimensional space,
that is,

F [ f (x, y)] 5 FI I,mn

L Lx y4 mpx npy
5 f (x, y)sin sin dx dy.E E IL L L Lx y x y0 0

(3.16)

The double Fourier sine series of fI are
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21f (x, y) 5 F [F ]I I,mn

M N mpx npy
5 F (m, n)sin sin , (3.17)O O I L Lm51 n51 x y

where F21 is the inverse Fourier sine transform operator
from wave to physical space.

Thus, the solutions of (3.15) are

211
21c 5 2F V (3.18)adv,i adv,mn 21 2[ ]Lmn

and

211
21x 5 2F D , (3.19)adv,i adv,mn 21 2[ ]Lmn

where

V 5 F [V ], D 5 F [D ], (3.20)adv,mn adv adv,mn adv

and Lmn is referred to as a horizontal scale of the wave
and expressed by

2 2 2 21 m p n p
5 1 . (3.21)

2 2 2L L Lmn x y

Utilizing (3.18) and (3.19), (2.26) and (2.27) can be
solved with zero Dirichlet boundary values, and their
solutions are

]ci 1 f x 5 c (3.22)0 i adv,i]t

]xi 1 (f 1 RT lnp ) 2 f c 5 x 2 E . (3.23)0 i 0 i adv,i i*]t

Because the terms Kz, Kd, KT, and Kq represent the
influence of unsolved horizontal scales, their treatment
involves a horizontal diffusion solved by the spectral
method based on the splitting procedure. The method
for solving these terms is described in section 4e, and
thus, these terms are temporarily omitted from (3.22)
and (3.23).

c. The equation of the inner part of the generalized
geopotential height on the constant s surface

Now we introduce a variable

f9 5 F 1 RT0lnp*, (3.24)

where f9 is referred to as the generalized geopotential
height in s coordinates. Because the geopotential height
on the constant s surface depends on the temperature
through the hydrostatic equation (2.30), the generalized
geopotential height is expressed by

f9 5 f* 1 RBT 1 RT0lnp*. (3.25)

Taking the partial derivative with respect to t, (3.25)
becomes

]f9 ]T ] lnp*5 RB 1 RT . (3.26)0]t ]t ]t

Substituting (2.24) and (2.28) into (3.26), the equation
of the generalized geopotential becomes

]f9
21 m AD 5 F9 , (3.27)0 had]t

where matrix A is

A 5 R(BF 1 T P). (3.28)0

Here,

F9 ↓ 5 RBT 1 RT P 1 RBP (3.29)had adv 0 adv T

denotes the variation of the generalized geopotential
height caused by the advection and diabatic heating.

Based on (3.14), (3.27) can be rewritten into two
equations as

]f9i 21 m AD 5 F9 , (3.30)0 i had,i]t

and

]f9h 21 m AD 5 F9 . (3.31)0 h had,h]t

Based on (3.10), (3.11), and (3.12), (3.30) is rewritten
in the form

]f9i 2 2 21 m A¹ x 5 F9 1 m AD9, (3.32)0 i had,i 0 h]t

where
2D9 5 D 2 D z 5 ¹ x (3.33)h h h S h,i

is the harmonic part of the divergence in the closed
region with zero boundary value. Equations (3.22),
(3.23), and (3.32) are the basic equations of the inner
parts of the three variables: the streamfunction, velocity
potential, and generalized geopotential.

d. The equation of the generalized ageostrophic
geopotential

If the inner parts of the streamfunction and geopo-
tential in p coordinates are denoted by cp,i and fp,i, the
ageostrophic deviation in the atmospheric motion can
be expressed by fp,ia 5 fp,i 2 f0cp,i, where fp,ia is re-
ferred to as an inner part of the ageostrophic geopoten-
tial on isobaric surface. In s coordinates, the generalized
ageostrophic geopotential at s surface is approximately
defined by

5 2 f0ci 5 (f 1 RT0 lnp*)i 2 f0ci.f9 f9ia i (3.34)

From (3.22) and (3.32), the equation of the generalized
ageostrophic geopotential is

]f9ia 2 2 2 21 m A¹ x 2 f x 5 F9 1 m AD9, (3.35)0 i 0 i had,ia 0 h]t

where

5 2 f0cadv,iF9 F9had,ia had,i (3.36)
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is referred to as the variation of the generalized ageo-
strophic geopotential caused by advection and diabatic
heating.

The velocity potential equation (3.23) can be rewrit-
ten as

]xi 1 f9 5 x 2 E . (3.37)ia adv,i i]t

The basic variables for describing the atmospheric mo-
tion now become the inner parts of the streamfunction,
velocity potential, and generalized ageostrophic geo-
potential.

4. The inner part equations of the vertical modes
and their semi-implicit time-integration scheme

a. The inner part equations of the vertical modes

Equation (3.32) or (3.35) can be transformed into the
equation of its vertical mode. We introduce a matrix E
in order that the following relation is satisfied:

E21AE 5 G 5 diag(gh1, gh2, . . . , ghN). (4.1)

For this purpose, the eigenvectors of the matrix A are
derived and expressed by Ej, j 5 1, . . . , N. In (4.1),
the matrix E represents the eigenvector matrix with each
column representing an eigenvector Ej. The matrix E21

is the inverse of the matrix E. The matrix G is a diagonal
matrix with the diagonal elements given by the N ei-
genvalues, (gh1, gh2, . . . , ghN), of the matrix A. The
values h1, h2, . . . , and hN are the equivalent depth of
the vertical modes.

Let the vertical mode of the variables be

xi* 5 E21xi, ci* 5 E21ci, 5 E21 ,f9 f9ia ia* (4.2)

and thus, the variables in physical space are

xi 5 Exi*, ci 5 Eci*, 5 E .f9 f9ia ia* (4.3)

Equations (3.22), (3.37), and (3.35) are multiplied
from left by the matrix E21; then

]ci* 1 f x 5 c (4.4)0 i adv,i* *]t

]xi* 1 f9 5 x 2 E (4.5)ia adv,i i* * *]t

]f9ia* 2 2 2 21 m G¹ x 2 f x 5 F9 1 m GD9 , (4.6)0 i 0 i had,ia 0 h* * * *]t

where

21 21x 5 E x , c 5 E c ,adv,i adv,i adv,I adv,i* *

21 21F9 5 E F9 , D9 5 E D9. (4.7)had,ia had,ia h h* *

The equations (4.4)–(4.6) can be rewritten as

]ci k* 1 f x 5 c , (4.8)0 i k adv,i k* *]t

]xi k* 1 f9 5 x 2 E (4.9)ia k adv,i k i k* * *]t

]f9 1ia k* 2 2 21 C ¹ 2 x 5 F9 2 C D9 (4.10)k i k had,ia k k h k* * *21 2]t L0k

k 5 1, 2, . . . , N (4.11)

for each of the vertical modes separately, where Ck is
the gravity wave phase speed for the kth vertical mode,
and L0k is the radius of deformation of the kth mode,
and they are expressed by

22m gh C0 k k1/2 2C 5 m (gh ) , L 5 5 , (4.12)k 0 k 0k 2 1 2f f0 0

respectively. The equations for the vertical mode k have
the same form as the shallow water equations with
equivalent depth, hk.

b. The solution of the gravity–inertia wave equation
in the semi-implicit time-integration scheme

Now introducing a leapfrog scheme,
t1Dt t2DtX 2 X

d X 5 , (4.13)t 2Dt

to analogize the time derivative of a variable X, and
using an implicit treatment of the linear gravity wave
terms in (4.8)–(4.10), we obtain the following set of
prognostic equations:

t td c 1 f x̄ 5 c (4.14)t i k 0 i k adv,i k* * *

t t td x 1 5 x 2 E (4.15)f9t i k i k adv,i k i k* * * *

2 2 t 2 t t 2 td f9 1 C ¹ x̄ 2 f x̄ 5 F9 1 C D9 ,i ia k k i k 0 i k had,ia k k h k* * * * * (4.16)

where
t1Dt t2DtX 1 X

tX̄ 5 . (4.17)
2

From (4.17), (4.13) becomes
t t2DtX̄ 2 X

d X 5 . (4.18)t Dt

Thus, (4.14)–(4.16) can be rewritten as
t tc 1 f D tx̄i k 0 i k* *

t t2Dt5 c Dt 1 c (4.19)adv,i k i k* *

t tx 1 (Dt)f9i k ia k* *

t t t2Dt5 (x 2 E )Dt 1 x (4.20)adv,i k i k i k* * *

t 2 2 t 2 t1 C Dt¹ x 2 f Dtxf9 k i k 0 i k* *ia k*

t 2 t t2Dt5 DtF9 1 C DtD9 1 f9 . (4.21)had,ia k k h k ia k* * *

Eliminating t from (4.20) and (4.21), we obtainf9ia k*
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1 1
2 t t t¹ x 2 1 x 5 F , (4.22)i k i k k* * *2 2[ ](C Dt) Lk 0k

where the forcing term, is expressed bytF ,k*

1
t 2 t 2 2 tF 5 2 [2(Dt) F9 2 C (Dt) D9k had,ia k k h k* * *2(C Dt)k

t2Dt t t t2Dt2 (Dt)f9 1 (x 2 E )Dt 1 x ].ia k adv,i k i k i k* * * *

(4.23)

Equation (4.22) is the semi-implicit time integration
scheme of the gravity–inertia wave equation, and it de-
scribes the averaged velocity potential between two time
steps in vertical mode space.

Because the lateral boundary value of the inner part
of the velocity potential is homogeneous, the solution
of the Helmholtz equation (4.22) can be derived from
the double sine series. Based on (3.16) and (3.17), the
solution is written in the form

211
t t 2x̄ 5 2F [F (x, y)] 1 a , (4.24)i k,mn k* * 21 2Lmn

where

1 1
2a 5 1 . (4.25)k 2 2(C Dt) Lk 0k

After the vertical mode of the velocity potential is ob-
tained from (4.24), the streamfunction can be computed
from (4.19) by

t t t2Dt t¯ ¯c 5 c (Dt) 1 c 2 ( f Dt)x . (4.26)i k adv,i k i k 0 i k* * * *

After ci*
t is derived, we have

t t t tx 5 Ex , 5 E . (4.27)c ci i i i* *

From (4.17) and (4.18), the inner parts of the variables
in the next time step are

t1Dt t t2Dtx 5 2x̄ 2 x ,ik ik ik

t1Dt t t2Dtc 5 2c̄ 2 c . (4.28)ik ik ik

c. The semi-implicit scheme for surface pressure,
temperature, and mixing ratio

After introducing a leapfrog finite difference for the
time derivatives and an implicit treatment of the linear
gravity wave terms, (2.24), (2.28), and (2.32) can be
written as

t 2 t t t2Dt¯lnp 1 m DtPD 5 P Dt 1 lnp (4.29)0 adv *

t 2 t t t t2Dt¯ ¯T 1 m DtFD 5 T Dt 1 DtP 1 T (4.30)0 adv T

t t t t2Dtq̄ 5 (Q 1 P )Dt 1 q . (4.31)adv q

Based on (3.14), (4.29)–(4.31) can be separated into two
parts. The equations for the inner parts are

t 2 t t t2Dtlnp 5 2m DtPD 1 P Dt 1 lnp (4.32),i 0 i adv,i ,i* *

t 2 t t tT 5 2m DtFD 1 T Dt 1 DtPi 0 i adv,i T,i

t2Dt1 T (4.33)i

t t t t2Dtq 5 (Q 1 P ) Dt 1 q (4.34)i adv q i i

and the equations for the harmonic parts are

t 2 t t t2Dtlnp 5 2m DtPD 1 P Dt 1 lnp (4.35),h 0 h adv,h ,h* *

t 2 t tT 5 2m DtFD 1 T Dth 0 h adv,h

t t2Dt1 DtP 1 T (4.36)T,h h

t t t t2Dtq 5 (Q 1 P ) Dt 1 q , (4.37)h adv q h h

where Di
t in (4.32) and (4.33) can be calculated from

(3.13) by

t t t 2 t t¯D 5 D 2 D 5 ¹ (x 2 x ) (4.38)i h i h,i

and is obtained by the prediction of the global model.tDh

The values for the step t 1 Dt can be deduced by

Xt1Dt 5 2Xt 2 Xt2Dt. (4.39)

d. The computation of the initial time step

For the initial time steps, we perform three initial
steps: a forward step of Dt/4 and a centered one of Dt/2,
then a centered one of Dt. After these three initial time
steps, the basic time scheme with 2Dt is started. This
method is an effective way of reducing the initial shock,
especially when using the large time steps permitted by
use of the semi-implicit method.

The first forward time step is

Dt/4 (0)X 2 X
d X 5 (4.40)t Dt/4

Dt/4 (0)X 1 X
Dt/8X̄ 5 . (4.41)

2

Thus,

Dt/4 Dt/8 (0)¯X 5 2X 2 X . (4.42)

The second and third steps are

Dt/2 Dt/4 (0) Dt Dt/2 (0)¯ ¯X 5 2X 2 X , X 5 2X 2 X . (4.43)

Then the basic time step is started at t 5 Dt.

e. Horizontal diffusion

‘‘Horizontal’’ smoothing of streamfunction, velocity
potential, and specific humidity is represented by a sim-
ple linear fourth-order diffusion applied along the s
coordinate surface:

(KX)i 5 2K¹4Xi, (4.44)

where Xi 5 ci, xi, or qi. It is applied in spectral space
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FIG. 3. Outline of the one-way and two-way coupling external wind lateral boundary method
between global and limited-area models. (The global surface is the sum of the regions
R and Q.)

to t 1 Dt values such that if is a spectral coefficientm(x )i n

of Xi computed for time step t 1 Dt prior to diffusion,
then the diffused value is given by an implicit schememxin

as

21
m m mx 5 (x ) 2 2KDt x (4.45)i i n in n21 2Lmn

or

2121
m mx 5 (x ) 1 1 2KDt , (4.46)i i nn 21 2[ ]Lmn

where Lmn is determined by (3.21). A modified diffusion
is used for temperature to avoid an unrealistic warming
of mountain tops. A computationally convenient form

that approximates diffusion on pressure surfaces is used.
Equation (4.46) becomes

2121
m m m m5 (T ) 1 [(T ) 2 (T ) ] 1 1 2KDt ,Ti ic n i n ic nn 21 2[ ]Lmn

(4.47)

where

]p ]T
T 5 p lnp (4.48)ic i* *1 2]p ]p* ref

and (p*]p/]p* ]T/]p)ref denotes reference values, and it
varies only with the model level based on the standard
ICAO atmosphere.
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FIG. 4. The topography of model domain centered over North
America. Contour interval is 200 m.

5. An external wind lateral boundary method

a. The wind reconstruction and its lateral boundary
condition

The basic property of the wind separation into the
internal and external winds discussed by CK92a and
Chen et al. (1996) will be utilized to solve the lateral
boundary problem of a limited-area model. As pointed
out in section 1, if a limited-area model is nested in a
global model, only the internal wind in the limited area
can be predicted from the vorticity and divergence equa-
tions of the limited-area model, while the external wind
in the limited area must be derived from prediction of
the global model.

Based on the equations in section 4, the inner parts,
c and , are predicted by the limited-area modelt1Dt t1Dtxi i

as shown in the right column of Fig. 3. The internal
wind is computed by

t1Dt t1Dt]c ]xi it1DtU 5 2 1 ,I ]y ]x
t1Dt t1Dt]c ]xi it1DtV 5 1 . (5.1)I ]x ]y

The external wind, UE and VE, on closed R can be ob-
tained by the natural method (Chen et al. 1996) from
the predicted wind (or vorticity and divergence) of the
global model as shown in the middle column of Fig. 3.
In this natural method, the internal wind on closed R is
also derived based on the global model prediction, then
the external wind is computed by (3.5). The external
wind derived by the natural method satisfies the con-
sistency condition (Chen et al. 1996) automatically.

To compute the advection terms at the time step t 1
Dt, it is necessary to know Ut1Dt, Vt1Dt, Vt1Dt, and Dt1Dt

on closed R. The total wind on closed R at each time

step is the sum of the internal and external winds ex-
pressed by

t1Dt t1Dt t1DtU 5 U 1 U ,E I

t1Dt t1Dt t1DtV 5V 1 V . (5.2)E I

Based on (3.9), the vorticity and divergence, Vt1Dt

and Dt1Dt, on closed R are calculated from t1Dtci

and byt1Dtxi

t1Dt 2 t1Dt t1DtV 5 ¹ c 1 Vz ,i S

t1Dt 2 t1Dt t1DtD 5 ¹ x 1 Dz , (5.3)i S

where and can be obtained from the globalt1Dt t1DtVz DzS S

model prediction. For avoiding discontinuity of (5.3) at
the boundary, based on (3.13), (5.3) can be replaced by

t1Dt 2 t1Dt t1Dt t1DtV 5 ¹ (c 2 c ) 1 V ,i h,i h

t1Dt 2 t1Dt t1Dt t1DtD 5 ¹ (x 2 x ) 1 D . (5.4)i h,i h

By this boundary method, the predicted total wind at
the boundary of the limited region is not equal to the
predicted wind of the global model. Because the vor-
ticity and divergence within the region have been
changed by the limited-area model prediction, the wind
at the boundary should also change for consistency.

b. The lateral boundary condition for the variables ln
p*, T, and q

The harmonic parts of the surface pressure, temper-
ature, and mixing ratio, , , and , aret1Dt t1D t t1Dtlnp , T qh h h*
different from the external wind because they can be
predicted not only from the global model but also from
the limited-area model by (4.35)–(4.37). The harmonic
parts computed from the global model are denoted by

, , and , while those calculatedt1Dt t1Dt t1Dt(lnp , ) (T ) (q )h gm h gm h gm*
from the limited-area model based on (4.35)–(4.37) are
expressed by , , and . In general,t1Dt t1Dt t1Dt(lnp , ) (T ) (q )h lm h lm h lm*
the harmonic parts derived from the limited-area model
have higher resolution (or shorter horizontal scales) than
those derived from the global model, especially when
higher resolution topography is used in the limited re-
gion.

The harmonic part of a scalar variable used as the
boundary value of a limited-area model is referred to
as a boundary harmonic part. There are two methods to
determine the boundary harmonic parts. One method is
that the boundary harmonic parts are the same as the
harmonic parts derived from the global model, and thus,

t1Dt t1Dtlnp 5 (lnp ) ,,h ,h gm* *

t1Dt t1Dt t1Dt t1DtT 5 (T ) , q 5 (q ) . (5.5)h h gm h h gm

This method is referred to as a simple method.
The other method is called a weighted mean method.

In this method, the boundary harmonic parts are weight-
ed mean values of two harmonic parts derived from both
the global and limited-area models, and they are ex-
pressed by
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FIG. 5. Observed charts: (a) SLP (3-hPa isobar spacing) at 1200 UTC 4 January 1985; (b) the geopotential height (solid contours at 40-gpm
spacing), wind (arrows with scale in meters per second at bottom), and temperature (dashed in 2-K increments) at the 500-hPa level for the
same time as in (a); (c) SLP at 0000 UTC 5 January 1985; (d) SLP at 1200 UTC 5 January 1985; (e) SLP at 0000 UTC 6 January 1985;
and (f) the geopotential height, wind, and temperature at the 500-hPa level for same time as in (d).

t1Dt t1Dt t1Dtlnp 5 a(lnp ) 1 b(lnp ) ,,h ,h lm ,h gm* * *

t1Dt t1Dt t1DtT 5 a(T ) 1 b(T ) ,h h lm h gm

t1Dt t1Dt t1Dtq 5 a(q ) 1 b(q ) , (5.6)h h lm h gm

where a 1 b 5 1. The simple method is a special case
of the weighted mean method when a 5 0 and b 5 1
in (5.6).

The predicted variables, T, lnp*, and q at t 1 Dt in
the limited region, are the sum of the inner and boundary
harmonic parts expressed by

t1Dt t1Dt t1Dtlnp 5 lnp 1 lnp ,,i ,h* * *

t1Dt t1Dt t1DtT 5 T 1 T ,i h

t1Dt t1Dt t1Dtq 5 q 1 q . (5.7)i h

The method shown by (5.2), (5.3), and (5.7) is re-
ferred to as the external wind lateral boundary method,
and its goal is to guarantee two properties of the pre-
dicted variables at the boundary for the limited-area
model: one is consistency or continuity at the boundary,
and the other is accuracy.

The inner parts are predicted by the limited-area mod-
el in the form of the double sine series. The boundary
effects from the global model are represented by the
harmonic parts added to the inner parts. The harmonic
parts are all harmonic functions, and so are their linear
combinations shown by (5.6). The components of the
external wind are also harmonic functions. The har-
monic functions are very smooth in the closed region
up to the boundary, and thus, the sum shown by (5.2)
and (5.7) cannot cause any discontinuity near the bound-
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FIG. 5. (Continued)

ary. The accuracy of the prediction of the limited-area
model depends upon the accuracy of the provided
boundary values. The weighted mean method given by
(5.6) is designed with a view to obtain more accurate
boundary values for the limited-area model than by the
simple method.

The main purpose of this paper is to show the property
of the consistency or continuity for the external wind
lateral boundary method, and thus, only the tests of the
simple method are discussed in the next section.

c. The basic idea of a two-way coupling between
limited-area and global models

If the feedback from the limited-area model to the
global model is needed, the basic idea of a two-way
coupling method is also shown in Fig. 3. In the two-
way coupling method, the global surface is divided into
two parts as shown in section 1: one is the limited area
R and the other is the region Q outside the area R. The
boundary line between the regions R and Q is denoted
by S. During two-way coupling, the wind predicted by
the limited-area model will be used to update the wind
predicted by the global model in the limited area R
including the boundary S. From the global perspective,
the external wind of the region R is related to the vor-
ticity and divergence in the region Q, and inversely, the
external wind of the region Q is also related to the
vorticity and divergence in the region R. After the vor-
ticity, divergence and wind are updated in the region
R, the external wind of the region Q should also be
updated in order to obtain the continuous wind at the
global surface. The external wind of the region Q can
be derived from the updated wind at S. A similar method
can also be used to treat the variables lnp*, T, and q.

In this two-way coupling, changes are not only for
the wind and the scalar variables lnp*, T, and q in the
region R, but also for the external wind and the harmonic
parts of these scalar variables in the region Q. The pre-
dicted results will be very smooth over the global sur-
face for this two-way coupling method. Only some basic
ideas of this two-way coupling method are mentioned,
and how the external wind and harmonic parts of the
region Q are computed based on the boundary values
at S will not be discussed in this paper.

d. Some discussion on computation and boundary
value problems

The semi-implicit time integration scheme is applied
to the inner part equations of the model, and these inner
part equations are solved by the double sine series, such
as (4.24). During the computation of the spatial deriv-
atives, if the lateral boundary values are homogeneous,
for example, the computation of (5.1) and ¹2ci in (5.3),
the double sine series are directly used; if the spatial
derivatives of the harmonic function at the boundary
need to be computed, such as (5.4), the solution of the
harmonic function (CK92a) is used. As pointed out in
section 1, the Tatsumi’s (1986) modified Fourier series
are useful in computation of the spatial derivatives, this
method is also used in computing the spatial derivatives
of the horizontal advection terms in this paper. The non-
linear advection terms are computed by the transform
method (Orszag 1970; Eliassen et al. 1970), in which
products are performed by transforming to the values
at grid points, performing the product, and transforming
back to wave space.

In the spectral method, the wavenumber truncation
for avoiding the aliasing error was discussed by Canuto
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et al. (1987, p. 84), which is sometimes referred to as
the 3/2 rule. Chen (1993) found that using the 3/2 rule
in the spectral model with the transform method is not
necessary and the nonlinear computational instability
induced by the aliasing terms is not present in the long-
term integration. In our computations, it is also found
that wavenumber truncation for avoiding the aliasing
error is not necessary and the predicted results without
the wavenumber truncation are better. The method with-
out wavenumber truncation is used in this paper.

If a limited-area model is nested in a global model,
there are two kinds of interaction at the boundary. One
is the boundary consistency problem, which concerns
whether the variables at the boundary predicted by two
models are compatible (or continuous) with each other
at the same time step t 5 t0 1 Dt. The boundary treat-
ments studied by Benwell et al. (1971), Okamura
(1975), and Davies (1976) are all aimed at solving this
consistency problem, but the external wind lateral
boundary method is very effective for this purpose.

The other kind of interaction at the boundary between
two models is caused by horizontal transports of phys-
ical quantities, such as sensible heat and momentum
fluxes. This problem may be referred to as a boundary
forcing problem. This kind of interaction is a long-term
effect, and it can be studied only by time integration of
two models after the boundary consistency problem has
been solved.

6. Some test results of the H-F spectral limited-
area model with the external wind lateral
boundary method

We now show some examples of the predicted results.
The tests are performed with a view to check the validity
of the H-F spectral method and one-way influence ex-
ternal wind lateral boundary values used in a limited-
area model. In general, a new computational method or
a new boundary procedure is often tested in a shallow-
water model. However, the tests in this paper are dem-
onstrated by the predicted results of the adiabatic dy-
namical part of the H-F spectral limited-area model. For
this purpose, we choose examples for which diabatic
effects are not important for the development of the
major systems considered.

Because a comparison between the spectral method
and finite difference method has been performed by Tat-
sumi (1986) and Juang and Kanamitsu (1994), we do
not repeat it here.

a. Rapid cyclonic development along the east coast
of North America

The first example is a rapid development of a cyclone
near the east coast of North America. The topography
of the model domain is shown in Fig. 4. In the vertical,
16 s-levels at s 5 0.015, 0.045, 0.075, 0.105, 0.140,
0.200, 0.285, 0.390, 0.510, 0.630, 0.735, 0.825, 0.900,

0.950, 0.980, and 0.995 are used. The grid spacing is
180 km, and the total number of grid points is 61 3
51. A time step Dt of 30 min is used for the semi-implicit
scheme.

The observed sea level pressure (SLP) and the geo-
potential height, temperature, and wind fields at the 500-
hPa level at the initial time, 1200 UTC 4 January 1985,
are shown in Figs. 5a and 5b; they are based on the
analyses from the European Center for Medium-Range
Weather Forecasts (ECMWF) at 2.58 3 2.58 resolution
[TOGA Archive II from the National Center for At-
mospheric Research (NCAR)]. The SLP for 0000 and
1200 UTC 5 and 0000 UTC 6 January 1985 and the
geopotential height, temperature, and wind fields at the
500-hPa level for 1200 UTC 5 January 1985 are pre-
sented in Figs. 5c–f, respectively. The observed results
show that a cyclone rapidly develops in the 24-h period
from 0000 UTC 5 (Fig. 5c) to 0000 UTC 6 (Fig. 5e)
January 1985 along the east coast of North America. In
this 24-h period, the central pressure of the cyclone fell
by about 27 hPa, which is greater than 1 bergeron [1
bergeron 5 24 hPa day21 (sinf/sin608), where f, the
latitude of the cyclone center, is about 508]. This ex-
ample was studied by Kuo and Low-Nam (1990), who
found no significant difference in predicted intensity and
location of this cyclone by using the NCAR–Penn State
MM4 model with and without latent heat release. Thus,
dry baroclinic instability is an extremely important fac-
tor for this explosive cyclogenesis case. This example
is chosen with a view to assess the performance not
only for the adiabatic dynamical part of the H-F spectral
limited-area model but also for the external wind lateral
boundary method.

In general, dry baroclinic instability is an important
necessary condition for explosive oceanic cyclogenesis.
If the dry baroclinic instability is strong enough, the bar-
oclinic development alone can cause explosive cyclo-
genesis. In this case, the strong baroclinic instability is
not only a necessary condition, but also a sufficient one.
If the dry baroclinic development is not strong enough,
other diabatic heating processes (latent heat release, sen-
sible heat, and moisture fluxes at the lower boundary,
and convective condensation feedback) are also neces-
sary for the explosive development. In this latter case,
the baroclinic instability together with the diabatic heat-
ing processes becomes the sufficient condition. The ex-
ample chosen here belongs to the former case.

In the tests, the limited-area model is not nested in a
global model. The boundary values are provided by the
analyzed data instead of those from the prediction of a
global model. The analyzed data are available only every
12 h, but the boundary values are required at each time
step. The boundary values at each time step are linearly
interpolated from analyzed data at 12-h intervals.

The external wind lateral boundary method discussed
in section 5 is used in the tests, and there is no other
boundary treatment in the model. As an example, the
components of the external wind, UE and VE, at s 5
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FIG. 6. An example of the lateral boundary conditions at 1200 UTC 4 January 1985: (a) the component of the external wind, UE (in 4 m
s21 increments), at the level of s 5 0.510; (b) the same as (a) but for VE; (c) the harmonic part of lnp*, i.e., lnp*h; and (d) the harmonic
part of temperature, Th (interval of 4 K), at the level s 5 0.825.

0.510 level for the initial time 1200 UTC January 4
1985 are shown in Figs. 6a and 6b, respectively. The
boundary harmonic parts of the surface pressure, lnp*h,
and the temperature, Th, at s 5 0.825 level are deter-
mined by the simple method (5.5) except that the har-
monic parts are derived from the analyzed data, and
their values for the initial time are shown in Figs. 6c
and 6d, respectively. Figures 6 show that they are all
harmonic functions and attain their largest and smallest
values at the boundary.

The 12-, 24-, and 36-h predictions of SLP are shown
in Figs. 7a–c, respectively. It is seen from Fig. 7c that
the predicted location of the developing cyclone is the
same as the observed one in Fig. 5e. The predicted
positions of all systems in Fig. 7c are very good. This
is due to the fact that there is no systematic phase error
in the spectral method. The rapid development of the

cyclone is predicted very well by the adiabatic dynam-
ical part of the model. The central pressure change pre-
dicted in 24 h from 0000 UTC 5 to 0000 UTC 6 January
1985 is about 25 hPa. The central pressure of the cyclone
in Fig. 7c differs by only a small amount from that of
the observations. The 12-, 24-, and 36-h predictions of
the geopotential, temperature, and wind fields at the
500-hPa level are better than those of the SLP, but only
the 24-h prediction is shown in Fig. 7d for comparison
with the observations in Fig. 5f.

It is seen from Figs. 5a, 5c, and 5d that a cyclone
moves into the region through the western boundary. In
Fig. 5e, this cyclone is already within the region, and
is followed by another cyclone coming through the same
boundary. The 12-, 24-, and 36-h predicted results pre-
sented in Figs. 7a–c show that the cyclone gradually
and smoothly moves into the region across the western
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FIG. 7. The predicted results: (a) SLP at 0000 UTC 5 January 1985; (b) SLP at 1200 UTC 5 January 1985; (c) SLP at 0000 UTC 6
January 1985; and (d) the geopotential height, wind, and temperature at the 500-hPa level for same time as in (b).

boundary and is smoothly followed by the second cy-
clone (Fig. 7c). Thus, the boundary method is capable
of transmitting motion systems smoothly into and out
of the limited region. All the fields near the boundary
shown in Figs. 7a–d are very smooth, and there is no
discontinuity at the boundary.

Comparing Figs. 5e and 7c, some errors occur near
Greenland. These errors are caused by two factors. One
is due to the values being interpolated at 12-h intervals
at the boundary where high mountains are cut off. The
value of lnp*h is very large at the boundary where high
mountains are cut off, as shown in Fig. 6c over Green-
land. If the boundary values are linearly interpolated
from analyzed data at 12-h intervals, and the evolution
of the true boundary values is produced by the nonlinear
equations, some errors must be generated at the bound-
ary. Thus, the errors of lnp*h must be relatively large at

this boundary. Tests show that the boundary errors ex-
pressed by harmonic functions do not produce any dis-
continuity at the boundary even though the errors are
very large. This is an important advantage of the ex-
ternal wind lateral boundary method. However, the ac-
curacy of the prediction is affected by the errors at the
boundary. If the 12-h interpolation is removed by using
the limited-area model nested in a global model or in
a coarser limited-area model over a larger domain, the
errors in prediction can be greatly reduced, which will
be shown in the next example.

The second factor may be due to the strong cooling
at the ice surface in winter over the Greenland Ice Sheet
because of radiation and land–ice–atmosphere interac-
tions in the PBL, which is not taken into account in the
prediction of the adiabatic dynamical part of the limited-
area model.
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FIG. 8. The topography of the model domain over East Asia. Con-
tour interval is 200 m.

b. Lee cyclogenesis over East Asia and other
phenomena related to the Tibetan Plateau

Another example involves lee cyclogenesis over East
Asia. Orographically forced cyclones, known as Alpine
lee cyclones in Europe and Colorado and Alberta cy-
clones in North America, formed in the lee of the Rocky
Mountains, have been studied by many authors (e.g.,
Palmen and Newton 1969; Buzzi and Speranza 1983).
Although many major mountain barriers exist in East
Asia, very few studies on lee cyclogenesis in this area
have been done. Figure 8 shows the topography of the
region defined for the limited-area model. Figures 4 and
8 are all computed from the U.S. Navy high resolution
(109 3 109) dataset provided by NCAR. In the region
shown by Fig. 8, the largest mountain is the huge Ti-
betan Plateau, whose maximum height is greater than
5000 m, and to the southwest of Lake Baikel, there are
the Altai–Sayan Mountains, whose height is about
2200 m. The height and horizontal scale of the Altai–
Sayan Mountains are comparable to those of the Alps.
The topography of this region is the most complex in
the world. The chosen example is to check whether or
not the adiabatic dynamical part of the H-F spectral
model can be used in this most orographically compli-
cated region and to assess whether the external wind
boundary values can be applied to the boundary where
high mountains are cut off, as shown on the western
boundary in Fig. 8.

c. Lee cyclogenesis

The observed SLP and the geopotential, temperature,
and wind fields at the 500-hPa level for the initial time
1200 UTC 14 April 1988, based on the data from
ECMWF, are shown in Figs. 9a,b, respectively. At 1200
UTC 14 April (Fig. 9a), a mature cyclone moves east-
ward to the north of Lake Baikal, which may be referred

to as the parent cyclone according to Palmen and New-
ton (1969). A front trailing along the cyclone is oriented
from northeast to southwest with a cold high behind.
At the 500-hPa level (Fig. 9b), a major trough is located
over the Urals with a diffluence of the height contours
over the Altai–Sayan region. The SLP for 0000 and
1200 UTC 15 and 16 April 1988 and the geopotential,
temperature, and wind fields at the 500-hPa level for
1200 UTC 15 and 16 April 1988 are presented in Figs.
9c–h, respectively. In Fig. 9c, a pressure ridge is formed
on the windward side of Altai–Sayan when the front
moving eastward is retarded by mountains. At the same
time, the sea level pressure on the lee side of the moun-
tains starts to fall and a low pressure trough appears
over the Mongolian Plateau ahead of the front. Twelve
hours later, as shown in Fig. 9d, a lee cyclone was
formed with the central pressure about 996 hPa. At 0000
and 1200 UTC 6 April, as shown in Figs. 9e and 9f,
this cyclone has grown to its mature state. However, the
central pressure does not decrease, but increases and
then stays unchanged at 999 hPa. The lee cyclone sep-
arates from the parent cyclone as the latter moves away
from the limited region.

This example was simulated by Chen and Lazic
(1990) with two experiments using a finite-difference
limited-area model, of which the model description can
be found in Mesinger et al. (1988). One experiment is
performed with a ‘‘step mountain’’ (eta) coordinate
(Mesinger and Janjic 1986) and the other with standard
sigma coordinates. The horizontal resolution used for
these experiments was 0.58 3 0.58 with 16 levels in the
vertical. It was found that the ETA experiment produced
the cyclogenesis in a way similar to that in the analyses
both at the surface and in the midtroposphere.

In our numerical simulation of this example, 16 s
levels in the vertical are the same as given in the last
subsection. The grid length is 120 km, and the total
number of grid points is 61 3 51. The time step Dt is
20 min for the semi-implicit scheme.

As pointed out in the above example, the accuracy
of the prediction is affected by the errors at the boundary
due to the linear interpolation from 12-h intervals, es-
pecially by the errors in lnp*h at the boundary where
high mountains are cut off, as shown on the western
side of Fig. 8. To avoid this error at the boundary, a
coarser limited-area model over a larger domain is used
to provide the boundary values to the fine-mesh limited-
area model. The coarse-mesh model is the same spectral
limited-area model with the same total grid points
61351, but it is over a larger domain than Fig. 8 with
the grid length of 240 km. The coarse-mesh model runs
first for 48-h prediction with the lateral boundary con-
dition derived from the linear interpolation of the an-
alyzed values of 12-h intervals. Then the boundary val-
ues of the fine-mesh model are interpolated from the
predicted values of the coarse-mesh model every 3 h.
This boundary method is used in the simulation for the
region shown in Fig. 8.
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FIG. 9. Observed charts: (a) SLP at 1200 UTC 14 April 1988 (the heavy solid line denotes a front); (b) the geopotential height, wind,
and temperature at the 500-hPa level for the same time as in (a); (c) SLP at 0000 UTC 15 April 1988; (d) SLP at 1200 UTC 15 April 1988;
(e) SLP at 0000 UTC 16 April 1988; (f) SLP at 1200 UTC 16 April 1988; (g) the geopotential height, wind, and temperature at the 500-
hPa level for same time as in (d); and (h) the geopotential height, wind, and temperature at the 500-hPa level for same time as in (f).

The predicted SLP for 12, 24, 36, and 48 h and pre-
dicted geopotential, temperature, and wind fields at 500-
hPa level for 24 and 48 h from the initial time are shown
in Figs. 10a–f, respectively. In Fig. 10a, a predicted pres-
sure ridge is also formed on the windward side of Altai–
Sayan and a low pressure trough appears over the Mon-
golian Plateau ahead of the front, which is the same as
the observed situation in Fig. 9c. In the prediction for
12 h later shown in Fig. 10b, a lee cyclone is formed
and its central pressure is 994 hPa, about 2 hPa lower
than the observed. The predicted cyclone at 0000 and
1200 UTC 16 April shown in Figs. 10c,d develops to its
mature stage. However, the predicted central pressure of
the lee cyclone does not decrease but increases to 998
and 999 hPa, respectively. Its simulated maturation is the

same as that analyzed in Figs. 9d and 9e. From the above,
it is seen that the position, intensity, and maturation pro-
cess of the predicted lee cyclone are very similar to those
of the analyzed. Compared to the simulated results of
Chen and Lazic (1990), a more accurate position, inten-
sity, and maturation process of the surface lee cyclone are
predicted by the H-F spectral model with less horizontal
resolution and without the step-mountain coordinate.

d. Other phenomena

From 1200 UTC 15 (Fig. 9d) to 1200 UTC 16 (Fig.
9f) April 1988, the anticyclone behind the lee cyclone
moves toward the southeast, and it causes cold air to
affect the northeastern part of the Tibetan Plateau. It
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FIG. 9. (Continued)

can also be seen from the wind and temperature fields
at 500-hPa level that cold-air advection appears in ad-
vance of the upper trough (Fig. 9g) and ultimately de-
velops into a small midtropospheric cutoff low (Fig. 9h).

In the predictions for 1200 UTC 15 (Fig. 10b) and
16 (Fig. 10d), the anticyclone to the west of the lee
cyclone also moves toward southeast. The positions of
the high pressure in Figs. 9f and 10d are similar, but
the predicted central pressure is higher than the ob-
served. The predicted wind and temperature fields at the
500-hPa level also show that cold-air advection occurs
in advance of the upper trough (Fig. 10e) and ultimately
develops into a small midtropospheric cutoff low (Fig.
10f). Chen and Lazic (1990) found that the experiment
with the standard sigma coordinate failed to simulate
the upper cutoff low. It is seen from Fig. 10f that the

upper cutoff low can also be simulated the H-F spectral
model with the standard sigma coordinate. The cold air
affecting the northeastern part of the Tibetan Plateau is
predicted but not as strongly as that observed.

e. Phenomena over the Tibetan Plateau

Weather analysis over the Tibetan Plateau is a difficult
and unsolved problem, and so is numerical weather pre-
diction near this region. The synoptic analysis at sea
level and at the 850- and 700-hPa levels over the Tibetan
Plateau are all extrapolated from the upper troposphere.
Weather systems in these analyses, including the ana-
lyzed data from ECMWF, are very difficult to identify.
Both analysis methods and numerical weather prediction
over this region should be improved.
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FIG. 10. The predicted results: (a) SLP at 0000 UTC 15 April 1988; (b) SLP at 1200 UTC 15 April 1988; (c) SLP at 0000 UTC 16 April
1988; (d) SLP at 1200 UTC 16 April 1988; (e) the geopotential height, wind, and temperature at the 500-hPa level for same time as in (b);
and (f) the geopotential height, wind, and temperature at the 500-hPa level for same time as in (d).

In the SLP analysis from ECMWF shown in Figs. 9a,
9c, 9d, and 9e, there is a high pressure area over the
western region of the Tibetan Plateau. The first step for
modeling over the Tibetan Plateau is to test the model
predictions against the analyses from ECMWF includ-
ing the SLP. It is found that the spectral limited-area
model with the external wind boundary values can
smoothly run over this most orographically complicated
region. The predicted results shown in Figs. 10a, 10b,
and 10c also have the high pressure area over the west-
ern region of the Plateau.

Routine weather analysis method in the lower tro-
posphere cannot identify weather systems moving
across the Tibetan Plateau, but such weather systems do
exist and often produce precipitation over Sichuan Basin
and other downstream regions after they move out of
the plateau. Comparing Figs. 9g and 10e, a trough in

the lower troposphere moving to the east of the Tibetan
Plateau is predicted by the H-F spectral model. This
trough in the 24-h prediction is correct, but it is too
strong in the 48-h prediction (Figs. 9h and 10f). Re-
cently, an isobaric geopotential height in s coordinates
(Chen and Bromwich 1996) has been proposed. It can
improve the performance of the H-F spectral limited-
area model over the Tibetan Plateau and other moun-
tainous regions, and this will be discussed elsewhere.

7. Conclusions

Based on the tests of the H-F spectral limited-area
model with the external wind lateral boundary values
discussed in the above sections, the following conclu-
sions can be reached.

1) The harmonic-sine spectral method is very useful.
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FIG. 10. (Continued)

In comparison with the modified double Fourier series
used by Tatsumi (1986), the harmonic-sine spectral
method has two advantages. (i) The semi-implicit
scheme is quite efficient because the computation for
the Laplacian operator and the derivation for the solu-
tions of the Poisson and Helmholtz equations are made
very simple by this spectral method. (ii) The lateral
boundary value problem of a limited-area model can
easily be solved by the external wind boundary method.
These two advantages are similar to those of the spher-
ical harmonic series used in global models.

2) The external wind lateral boundary method is pro-
posed and examined for solving the lateral boundary
problem of a limited-area model. The theoretical basis
for this method is the basic property of the wind sep-
aration in a limited region. If a limited-area model is
nested in a global model, the internal wind depends only
on the vorticity and divergence inside the region and is
predicted by the limited-area model, while the external
wind depends only on the vorticity and divergence out-
side the limited region and it is predicted by the global
model. The external wind in the limited region can be
obtained by the natural method from the predicted wind
of the global model. At each time step, the predicted
total wind is the sum of the internal and external winds.

A similar method can also be used to solve the lateral
boundary values of the scalar variables, such as the
geopotential height, temperature, and surface pressure.
The boundary values for a limited-area model can be
given by the external wind and the harmonic parts of
the above scalar variables. In this method, the boundary
values are not given at the closed boundary line of the
limited region, but always given by the harmonic func-
tions defined in the whole limited domain. The deriv-
atives of the harmonic function up to second order are

continuous within the region up to the boundary. The
harmonic functions added to the inner part represent the
effect of the lateral boundary values on the prediction
of the limited-area model. This procedure cannot cause
any discontinuity of the variables near the boundary.

3) The prediction of a limited-area model at each time
step can be computed by the sum of two parts: the
prediction of the internal wind and inner part, and the
prediction of the external wind and harmonic part. The
prediction of the internal wind and inner part is derived
from the inner part equations of the limited-area model.
The boundary values of the inner parts are all homo-
geneous, and thus inner part equations can be solved
easily by the double sine series. The semi-implicit
scheme is quite easily and efficiently used for the inner
part equations, the form of whose solutions is quite
similar to that of the global spectral model except that
the spherical harmonics are replaced by the double sine
series. In addition, because the double sine series ex-
pansion can be calculated by FFT, its computation is
faster and easier than that of the spherical harmonics in
global models.

4) From the tests of the two cases of the one-way
external wind lateral boundary method, it is shown that
the predicted variables near the lateral boundary are
very smooth without any other boundary treatment. The
predicted motion systems can smoothly move in and out
through the boundary and no wave reflection and small
perturbations develop near the lateral boundary. The
model can smoothly run over the complicated moun-
tainous region shown in Fig. 8. The proposed boundary
method can also be used at the boundary where high
mountains are cut off, as shown in the western boundary
of Fig. 8. Thus, by using the external wind boundary
method, the difficulties of the lateral boundary values
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associated with a limited-area model are greatly re-
duced.

5) The test of the rapid growth of a cyclone on the
east coast of North America shows that the dynamical
part of the H-F spectral limited-area model accurately
predicts the rapid development caused by dry baroclinic
instability. The location of predicted cyclone is the same
as the observed, and the positions of other systems are
also predicted very well. The central pressure change
of the cyclone in the 24-h period from 0000 UTC 5
January to 6 January 1985 is about 25 hPa, which differs
only slightly from the observations. The 12-, 24-, and
36-h prediction of the SLP and geopotential, tempera-
ture, and wind fields at 500-hPa level are very similar
to those observed.

6) The test of a lee-cyclogensis case in East Asia
shows that the predicted position and intensity of the
cyclone are quite similar to those observed. The ob-
served development of this lee cyclone indicates that a
low pressure trough first appears over the Mongolian
Plateau ahead of the front, and then the lee cyclone
develops. However, the central pressure of the lee cy-
clone does not decrease but increases when it grows to
its mature state. The predicted maturation processes are
quite similar to those observed. Cold air associated with
an anticyclone affecting the northeastern part of the Ti-
betan Plateau is also predicted by the model.

The H-F spectral limited-area model needs to be com-
pleted with a full package of physical parameterizations
and to be further tested.
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APPENDIX

The Vertical Finite-Difference Form of the
Equations

The vertical distribution of variables is shown in Fig. 1:
We define

Ds 5 s 2 s . (A.1)k k11/2 k21/2

The vertical advection of a variable X is approximated by

]X 1• •s ø [s (X 2 X )k11/2 k11 k1 2]s 2Dskk

•1 s (X 2 X )]. (A.2)k21/2 k k21

a. The continuity equation

Using the boundary conditions
• •s z 5 0 and s z 5 0 (A.3)s50 s51

and (2.4), the local surface pressure tendency is ex-
pressed by

1] lnp* 5 2 (d 1 V ·¹ lnp ) dsE *]t 0

1 1

5 2 d ds 2 V ds ·¹ lnp (A.4)E E *
0 0

and its vertical difference form is
N] lnp* 5 2 d DsO j j]t j51

N

2 V ·¹ lnp Ds . (A.5)O j j*
j51

Substituting (A.4) into (2.4) and integrating from 0
to s, is given by•s

1 s•s 1
5 d ds 2 d dsE E1 2s s0 0

1 s1
1 V ·¹ lnp ds 2 V ·¹ lnp ds .E E* *1 2s0 0

(A.6)

Both the sigma vertical velocity and local pressure ten-
dency can be divided into their divergence part and
surface pressure advection part, and their vertical dif-
ference forms are written as

• • •s 5 s 1 s (A.7)k11/2 div,k11/2 spa,k11/2

N k
•s 5 s d Ds 2 d Ds (A.8)O Odiv,k11/2 k11/2 j j j j

j51 j51

N
•s 5 s V ·¹ lnp DsOspa,k11/2 k11/2 j j*

j51

k

2 V ·¹ lnp Ds (A.9)O j j*
j51

N] lnp* 5 2 d Ds (A.10)O j j1 2]t j51div

N] lnp* 5 2 V ·¹ lnp Ds . (A.11)O j j*1 2]t j51spa

The pressure vertical velocity is written as
• •v s s ] lnp*•5 1 lnp 5 1 1 V ·¹ lnp . (A.12)* *p s s ]t

Using (A.4) and (A.6), (A.12) is rewritten as



JANUARY 1997 165C H E N E T A L .

sv 1
5 2 d dsEp s 0

s1
1 V ·¹ lnp 2 V ·¹ lnp ds ,E* *1 2s 0

(A.13)

and its vertical finite-difference form is

kv
5 V ·¹ lnp 2 C V ·¹ lnpOk kl l* *1 2p l51k

k

2 C d , (A.14)O kl l
l51

where C is a lower-triangle matrix,

Ds /s 0 0 · · · 01 1

Ds /s Ds /s 0 · · · 01 2 2 2

Ds /s Ds /s Ds /s · · · 01 3 2 3 3 3C 5 .· · · · · · ·F G
· · · · · · 0

Ds /s Ds /s Ds /s · · · Ds /s1 N 2 N 3 N N N

(A.15)

Using the vector form (2.25), the surface pressure
advection term Padv is expressed by

N ] lnp ] lnp* *2P 5 2m U 1 V DsOadv j j j1 2]x ]yj51

22 (m )9PD. (A.16)

Equation (A.14) is rewritten as

v ] lnp ] lnp* *2 25 m (I 2 C) U 1 V 2 m CD,1 2 1 2p ]x ]y

(A.17)

where I is a unit matrix. The horizontal divergence part
of v is expressed by

v
25 2m CD, (A.18)1 2p

div

and its surface pressure advection part is

v ] lnp ] lnp* *25 m (I 2C) U 1 V . (A.19)1 2 1 2p ]x ]y
spa

b. The hydrostatic equation

The integration of the hydrostatic equation (2.6) gives

skf 2 f 5 2RT ln , k , N, (A.20)k k11 v,k11/2 1 2sk11

and

f 2 f 5 2RT lns , (A.21)N v,N N*

where the mass-weighted mean temperature is

T Ds 1 T Dsv,k11 k11 v,k kT 5 , (A.22)v,k11/2 Ds 1 Dsk k11

and the same temperature at the surface and at N level
are assumed; f* 5 gH*, where H* is the height of the
earth surface.

We define two parameters aj and bj as follows:

Ds sj j21a 5 2 ln , N $ j $ 2j Ds 1 Ds sj j21 j

2lns , j 5 Nj

b 5 . (A.23)j Ds sj j2 ln , j , N5
Ds 1 Ds sj11 j j11

From (A.21) we have

f 5 f 1 Rb T (A.24)N N v,N*

and for k 5 N 2 1,

f 5 f 1 R(b T 1 a T )N21 N N21 v,N21 N v,N

5 f 1 Rb T 1 R(b 1 a )T . (A.25)N21 v,N21 N N v,N*

For k 5 N 2 2, we have

f 5 f 1 Rb TN22 N22 v,N22*

1 R(b 1 a )TN21 N21 v,N21

1 R(b 1 a )T . (A.26)N N v,N

On generalizing, we get

f 5 f 1 RbT 1 R(b 1 a )T 1 . . .k v,k k11 k11 v,k11*

1 R(b 1 a )T 1 R(b 1 a )T .N21 N21 v,N21 N N v,N

(A.27)

Consider a finite-difference form of the hydrostatic
equation,

n

f 5 f 1 R B T , (A.28)Ok kl vl*
l5k

where Bkl are elements of a matrix B expressed by

b b 1 a b 1 a · · · b 1 a1 2 2 3 3 N N

0 b b 1 a · · · b 1 a2 3 3 N N

0 0 b · · · b 1 a3 N NB 5 .
· · · · · · ·F G
· · · · · · b 1 aN N

0 0 0 · · · bN

(A.29)
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c. The thermodynamic equation

Utilizing (A.12), (2.3) can be written as

]T u ]T9 v ]T9
25 2m 11 2]t m ]x m ]y

2k]Ts• •k2 s s 1 kT lnp 1 P 1 K , (A.30)T T*]s

where k 5 R/Cp. Based on the separation of the vertical
velocity, (A.30) can be rewritten in the form

2k]T9 ]T s ] lnp0 *•k5 2s s 1 kTdiv 01 2]t ]s ]t
div

1 T 1 P 1 K , (A.31)adv T T

where

u ]T9 v ]T9
2T 5 2m 1adv 1 2m ]x m ]y

2k]T9s ] lnp*•k2 s s 1 kT9div 1 2]s ]t
div

2k]Ts ] lnp*•k2s s 1 kTspa 1 2]s ]t
spa

u ] lnp v ] lnp* *21 kTm 1 . (A.32)1 2m ]x m ]y

The vertical difference form of (A.31) is
N]T9k 25 T9 2 m F D 1 P 1 K , (A.33)Oadv,k k,l l T,k T,k]t l51

where the elements of matrix F are defined as
ks k 2k 2kF 5 [(T s 2 T s )(s Ds 2 e )k,l 0,k11 k11 0,k k k11/2 l 12Dsk

2k 2k1 (T s 2 T s )(s Ds 2 e )]0,k k 0,k21 k21 k21/2 l 2

1 kT Ds0,k l (A.34)

and

0, if l . k,
e 51 5Ds , if l # k,l

0, if l . k 2 1,
e 5 (A.35)2 5Ds , if l # k 2 1.l

The temperature advection can be separated into three
parts as

T9 5 T 1 T 1 T , (A.36)adv,k hor,k ver,k spa,k

where

]T9 ]T9k k2T 5 2m U 1 V (A.37)hor,k k k1 2]x ]y

is the temperature variation due to the horizontal ad-
vection and

ks k • 2k 2kT 5 2 [s (T9 s 2 T9s )ver,k div,k11/2 k11 k11 k k2Dsk

• 2k 2k1 s (T9s 2 T9 s )]div,k21/2 k k k21 k21

] lnp*1 kT9 (A.38)k 1 2]t
div

is caused by the temperature deviation due to divergence
part of the vertical motion. Here (] lnp*/]t)div and

are shown by (A.10) and (A.8), respectively.•sdiv,k11/2

The temperature variation due to the surface pressure
advection, Tspa,k, is expressed by

ks k • 2k 2kT 5 2 [s (T s 2 T s )spa,k spa,k11/2 k11 k11 k k2Dsk

• 2k 2k1 s (T s 2 T s )]spa,k21/2 k k k21 k21

] lnp ] lnp ] lnp* * *21 kT 1 m U 1 V ,k k1 2 1 2[ ]]t ]x ]y
spa

(A.39)

where (] lnp*/]t)spa and are shown by (A.11)•sspa,k11/2

and (A.9), respectively.

d. The equations of vorticity, divergence, and mixing
ratio

The vertical difference form of vorticity equation
(2.14) is

]Vk 5 2 f D 1 V 1 K , (A.40)0 k adv,k z,k]t

where

] ]
2 2V 5 2 U ( f 9 1 m V ) 1 V ( f 91 m V )adv,k k k k k[ ]]x ]y

]F ]Fv,k u,k22 ( f 9 1 m V )D 1 2 (A.41)k k 1 2]x ]y

1 • •F 5 2 [s (U 2 U ) 1 s (U 2 U )]u,k k11/2 k11 k k21/2 k k212Dsk

] lnp PU*2 RT9 1v,k 1 2]x m
k

1 • •F 5 2 [s V 2 V ) 1 s (V 2 V )]v,k k11/2 k11 k k21/2 k k212Dsk

] lnp PV*2 RT9 1 , (A.42)v,k 1 2]y m
k

and that of the divergence equation (2.15) is
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]Dk 25 f V 2 ¹ (f 1 RT lnP )0 k k 0k *]t
21 D 2 ¹ E 1 K (A.43)adv,k k d,k

2]( f 9 1 m V )kD 5 Vadv,k k ]x
2]( f 9 1 m V )k 22 U 1 ( f 1 m V )Vk k k]y

]F ]Fu,k v,k1 1 (A.44)
]x ]y

2m
2 2E 5 (U 1 V ).k k k2

The vertical difference of the equation of the mixing
ratio is

]qk 5 Q 1 P 1 K , (A.45)adv,k q,k q,k]t

where

]q ]qk k2Q 5 2m U 1 Vadv,k 1 2]x ]y
1 • •2 [s (q 2 q ) 1 s (q 2 q )].k11/2 k11 k k21/2 k k212sk

(A.46)
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