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Bilbao R, Blanchard-Wrigglesworth E,
Blockley E, Bromwich DH, Bushuk M,
Dong X, Goessling HF, Hobbs W, Iovino D,
Lee W-S, Li C, Meier WN, Merryfield WJ,
Moreno-Chamarro E, Morioka Y, Li X,
Niraula B, Petty A, Sanna A, Scilingo M,
Shu Q, Sigmond M, Sun N, Tietsche S,
Wu X, Yang Q and Yuan X (2023) SIPN
South: six years of coordinated seasonal
Antarctic sea ice predictions.
Front. Mar. Sci. 10:1148899.
doi: 10.3389/fmars.2023.1148899

COPYRIGHT

© 2023 Massonnet, Barreira, Barthélemy,
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Antarctic sea ice prediction has garnered increasing attention in recent years,

particularly in the context of the recent record lows of February 2022 and 2023.

As Antarctica becomes a climate change hotspot, as polar tourism booms, and as

scientific expeditions continue to explore this remote continent, the capacity to

anticipate sea ice conditions weeks to months in advance is in increasing

demand. Spurred by recent studies that uncovered physical mechanisms of

Antarctic sea ice predictability and by the intriguing large variations of the
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observed sea ice extent in recent years, the Sea Ice Prediction Network South

(SIPN South) project was initiated in 2017, building upon the Arctic Sea Ice

Prediction Network. The SIPN South project annually coordinates spring-to-

summer predictions of Antarctic sea ice conditions, to allow robust evaluation

and intercomparison, and to guide future development in polar prediction

systems. In this paper, we present and discuss the initial SIPN South results

collected over six summer seasons (December-February 2017-2018 to 2022-

2023). We use data from 22 unique contributors spanning five continents that

have together delivered more than 3000 individual forecasts of sea ice area and

concentration. The SIPN South median forecast of the circumpolar sea ice area

captures the sign of the recent negative anomalies, and the verifying

observations are systematically included in the 10-90% range of the forecast

distribution. These statements also hold at the regional level except in the Ross

Sea where the systematic biases and the ensemble spread are the largest. A

notable finding is that the group forecast, constructed by aggregating the data

provided by each contributor, outperforms most of the individual forecasts, both

at the circumpolar and regional levels. This indicates the value of combining

predictions to average out model-specific errors. Finally, we find that dynamical

model predictions (i.e., based on process-based general circulation models)

generally perform worse than statistical model predictions (i.e., data-driven

empirical models including machine learning) in representing the regional

variability of sea ice concentration in summer. SIPN South is a collaborative

community project that is hosted on a shared public repository. The forecast and

verification data used in SIPN South are publicly available in near-real time for

further use by the polar research community, and eventually, policymakers.
KEYWORDS

sea ice, seasonal prediction, Southern Ocean, Antarctica, forecasting & simulation
1 Introduction

Antarctic sea ice rarely fails to spur our curiosity. By the mid-

2000s, sea ice extent anomalies (Figure 1) had exhibited no

substantial change despite the global warming context. By

contrast, in the Northern Hemisphere, significant reductions in

Arctic sea ice extent were already evident year-round (Cavalieri

et al., 2003). From 1979 to the mid-2010s, there was a positive trend

in Antarctic sea ice extent, leading to a series of hypotheses that

could explain such unexpected behavior (see, e.g., Hobbs et al.

(2016) for a review). However, in spring-summer 2016-2017, the

sign of sea ice anomalies drastically switched from positive to

negative, canceling the gradual accumulation that had prevailed

since the late 1970s (Parkinson, 2019). Sea ice extent conditions

have remained low since then for all months of the year, with an

absolute record low set in February 2022 and then in February 2023

(Raphael & Handcock, 2022; Wang et al., 2022; Liu et al., 2023). The

interpretation of the summer 2022 and 2023 records is not obvious,

given the strong positive phase of the Southern Annular Mode in

summer 2021-2022, a mode that is normally associated with

positive sea ice extent anomalies (Verfaillie et al., 2022; their

Figure S2). Several ocean and atmospheric mechanisms have been
02
hypothesized to explain the 2016-2017 chain of events (Stuecker

et al., 2017; Schlosser et al., 2018; Meehl et al., 2019; Purich and

England, 2019; Zhang et al., 2022). It is speculated that the recent

decline of Antarctic sea ice extent could foreshadow more profound

changes in the Southern Ocean system (Eayrs et al., 2021).

Sea ice is a key variable of the high-latitude Southern

Hemisphere. While the Southern Ocean is known as a major

carbon sink for the atmosphere, having accounted for up to 40%

of the uptake of cumulative anthropogenic carbon emissions

(DeVries, 2014), sea ice processes can act both as a source or a

sink of atmospheric carbon depending on the season (Delille et al.,

2014; Gray et al., 2018). Sea ice growth (melt) is associated with salt

(freshwater) fluxes to the upper ocean that directly control its

stratification on seasonal to decadal timescales (Martinson, 1990;

Goosse and Zunz, 2014; Goosse et al., 2018). Sea ice also dampens

horizontal ocean transport processes such as storm-generated

waves (Kohout et al., 2014). Recent sea ice loss around the

Antarctic Peninsula, for example, has been identified as a possible

cause of ice shelf disintegration through enhanced ocean swells

(Massom et al., 2018). Finally, sea ice mitigates heat transfers

between the ocean and the atmosphere and, as such, plays a key

role in the energy balance in polar regions. The year-to-year
frontiersin.org
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fluctuations of sea ice at the regional and circumpolar levels might

thus have consequences on a longer term and on a global scale. In

view of this, the recent sequence of negative anomalies (Figure 1),

and our ability to predict these anomalies ahead of time, should be

given increased attention.

The interest for sea ice is not limited to the physical

environments. Sea ice hosts a stock of bacteria, algae, and grazers

which, upon melting, are released in the upper ocean and impact

the biological activity including phytoplankton blooms (Brierley

and Thomas, 2002). The variations in Antarctic sea ice extent

significantly affect marine productivity and fisheries (Liu et al.,

2022). Besides, sea ice conditions represent a real risk for all vessels

operating in high-latitude marine areas (COMNAP, 2015). This is

especially true for commercial operations - most notably fisheries

(e.g. krill) and tourism - which tend to use ice-strengthened vessels

rather than icebreakers. As the number and variety of tourist

activities increase in the high-latitude Southern Ocean (Tejedo

et al., 2022), considering sea ice related hazards, even in the

middle of austral summer, has become a priority. For all these

applications (and many more not mentioned here), a short-term

notice (say, a few weeks to months) of the anomalous character of

sea ice conditions in a given region would likely represent

significant added value over the currently used information that

consists of climatological forecasts or interpretation of real-time ice

charts. Such information could be valuable as the system appears to

be in a non-stationary state where climatology is, by definition,

not meaningful.

The feasibility of skillful seasonal sea ice predictions rests on

predictability mechanisms operating at sub-seasonal to seasonal

time scales. In contrast to historical Arctic sea ice, Antarctic sea ice

is almost entirely seasonal and is thinner on average, suggesting

possibly different mechanisms. The first estimates of initial-value

predictability (i.e., predictability associated with initial conditions

or ‘of the first kind’) of Antarctic sea ice are credited to Holland

et al. (2013). They investigated the characteristics of an ensemble of

sea ice trajectories of the Community Climate System Model

version 3 (CCSM3), each initialized on January 1st from the
Frontiers in Marine Science 03
model’s own state but subject to small perturbations at the initial

time. They identified an eastward traveling signal of predictability of

the Antarctic sea ice edge position with an associated timescale of 3-

9 months depending on the region considered. They also noticed a

temporary loss of predictability during the ice retreat season

followed by an increase in predictability in the second year

during the ice advance season. This phenomenon of ‘re-

emergence’ of predictability was confirmed in other model setups

(Marchi et al., 2019): significant correlations between sea surface

temperature (SST) anomalies in two successive winter seasons were

diagnosed in a six-model ensemble despite the absence of

correlation during summer. The re-emergence phenomenon is

explained by the storage of surface information below the ocean

mixed layer in the spring and summer seasons and the fact that

these anomalies resurface when the mixed layer deepens in autumn

and winter. A key finding of the Marchi et al. study is that the

predictability horizon appears to be mean-state dependent: climate

models with deeper oceanic mixed layers tend to exhibit longer

predictability. In an Arctic-Antarctic intercomparison, Ordoñez

et al. (2018) showed that Antarctic sea ice area predictability is

less influenced by the initial sea ice volume anomalies than in the

Arctic. Sea ice predictability is inherently tied to the vertical

structure of the properties of the underlying ocean (Libera et al.,

2022), which can explain why different estimates of predictability

have been obtained with different general circulation models but

also why these estimates may vary from one region to another.

In parallel to idealized predictability studies that employ model

output without reference to the observed sea ice state, several studies

have attempted to determine predictability content using

observational and reanalysis datasets or using retrospective

predictions (hindcasts). Chen and Yuan (2004) developed the first

seasonal forecast for Antarctic sea ice concentration with a statistical

model using a reanalysis of atmospheric variables and satellite-

observed sea ice data. This linear Markov model showed

considerable skill in predicting the anomalous sea ice concentration

up to one year in advance in the western Antarctic, and especially

high skill in austral winter. Chevallier et al. (2019) estimated that
FIGURE 1

(Left) Antarctic monthly mean sea ice extent anomalies relative to the 1981-2010 mean seasonal cycle, from January 1979 to December 2022 (OSI-
SAF sea ice index OSI-420; Lavergne et al., 2019). (Right) The 1979-2015 February climatological sea ice edge, defined as the 15% sea ice
concentration contour of the average sea ice concentration field (light blue line), and the February mean 2023 sea ice conditions (white shading).
The names of the regions introduced in Section 2.5 are given on this map.
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Antarctic sea ice extent anomalies have a typical decorrelation time

scale of up to two months in all seasons, except in austral spring

(October to December) where it can drop to 3 weeks. Using

reanalyses and satellite products, Holland et al. (2017) identified a

5-month relationship between springtime (October) zonal wind

anomalies in the Amundsen-Bellingshausen Seas and the March

sea ice area in the western Ross Sea: stronger westerlies in spring

increase sea ice divergence, favor shortwave absorption and heat

storage in the upper ocean and delay autumn sea ice advance. Such a

coupled mechanism was, however, not found in state-of-the-art

climate models (Holland et al., 2017). Recently, Morioka et al.

(2019; 2021) reported skillful prediction of summertime sea ice

conditions in the Weddell Sea owing to the initialization of winter

sea ice concentration and thickness, pointing to the potentially

increased contribution of thickness/volume anomalies to

predictability at regional scales. Using a suite of coupled dynamical

models, Bushuk et al. (2021) found that predictions of wintertime sea

ice edge position are improved when taking into account the zonal

advection of upper-ocean heat content anomalies. They also found

that the initialization of sea ice concentration and thickness played a

key role in summer prediction skill. TheWeddell Sea was found to be

a hotspot for summertime prediction (up to 9 months out) and less

skill was found in the Ross Sea. Payne et al. (2022) also found the

largest forecast skill in the Weddell Sea, with moderate skill in the

Ross, Amundsen and Bellinghausen Seas, and lowest skill in the

Indian andWest Pacific sectors. They also found an important role of

initial sea ice thickness for August to December predictions. Finally,

Zampieri et al. (2019) found that current subseasonal to seasonal

(S2S) prediction systems, not specifically geared towards polar

prediction, display skill that rarely beats trivial forecasts beyond a

few weeks. A key aspect of the Zampieri et al. (2019) study is that they

apply a stringent skill metric that penalizes the spatial discrepancies

between forecast and observed sea ice edges.

In summary, only a few studies have examined seasonal Antarctic

sea ice predictability, and it can be summarized that: (1) predictability

estimates vary regionally and seasonally; (2) the upper ocean is key to

carrying sea ice predictability over seasons and regions; (3) ocean

stratification and the vertical structure of its properties affects

estimates of predictability in climate models; (4) predictability and

skill are likely conditionally dependent on the baseline mean state;

and (5) in model experiments, skill is generally high in the Weddell

Sea and varies from one study to another in the Ross Sea. We note

that the Weddell Sea is the sector of the Southern Ocean with the

largest summer sea ice extent on climatological average. This sector,

unlike the others, hosts at least 1 million km2 of sea ice every summer,

approximately 50% of the circumpolar total (Parkinson, 2019).

The satellite record of observed sea ice extent anomalies

(Figure 1) suggests that, since the mid-2000s, Antarctic sea ice

could have entered a new regime characterized by increased

variance, increased persistence, and lower frequency. From the

angle of predictability, the current epoch could well be a ‘window

of opportunity’ in which longer-lived sea ice anomalies push the

horizon of predictability well beyond the levels that had been

prevailing before. Indeed, Payne et al. (2022) showed that

hindcast skill increased substantially when the hindcasts include

the 2010s.
Frontiers in Marine Science 04
In that context, the objective of SIPN South is to quantify the

skill of the available sea ice prediction systems with a focus on the

recent summers. Specifically, we aim to provide an initial answer to

three scientific questions:
1. Does the SIPN South ensemble exhibit systematic forecast

errors?

2. Do SIPN South forecasts provide added value over a

climatological forecast?

3. Is there a relationship between the forecasting approach

and skill?
We discuss in Section 2 the SIPN South protocol and the

different forecasting approaches taken by the contributors. In

Section 3, we attempt to answer the three questions raised above

by analyzing the forecasts made from 2017 until 2023. We finish by

discussing the limitations of the study and avenues for future work.
2 Methods

We describe the historical context of the SIPN South project

and the generic protocol for contributions. Then, we briefly

review the different approaches followed by the SIPN South

contributors. Finally, we review the products and methods used

for forecast verification.
2.1 SIPN South background

SIPN South was initially designed to be a 3-yr (2017-2019)

activity taking place within the Southern Hemisphere component of

the Year of Polar Prediction (YOPP-SH) project (Jung et al., 2016;

Bromwich et al., 2020). SIPN South was created for the scientific

reasons described in the introduction, but also to initiate a parallel

effort to the (Arctic) Sea Ice Prediction Network (Steele et al., 2021).

The project was extended beyond the initial period and now runs

every year. SIPN South has briefly been described in Abrahamsen

et al. (2020) and Bromwich et al. (2020), and in technical reports

published after each forecasting season, all available on the project

website (see “Data and code availability” section below).

Aroundmid-November each year, a call for contributions is issued

on various mailing lists related to polar research, and on social media.

The call itself contains the protocols to be followed, which we now

briefly summarize. The forecasts cannot use data beyond the 1st of

December andmust be submitted within the first 10 days of December.

The forecasts must cover the period 1st December to 28th February (90

days). The method of forecasting is free but must be documented. Up

to four diagnostics can be submitted, by order of descending priority

and for each of the 90 days of the forecasting period. These diagnostics

are: (i) the integrated Antarctic sea ice area, (ii) the sea ice area in each

successive 10° longitude band starting from 0°, (iii), the sea ice

concentration (provided on the contributor’s native grid), and (iv)

the effective sea ice thickness, i.e. sea ice volume per unit grid cell area,

also provided on the contributor’s native grid. SIPN South allows the

submission of ensembles of forecasts to reflect aspects of uncertainty in
frontiersin.org
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the experimental setup. Finally, the call document specifies the two

observational products that will be used as references for verification,

(see “Observational references” section below).

There are several differences between the protocol followed in

the SIPN South protocol and that followed in the (Arctic) sea ice

outlooks (SIO) that have been conducted by the Sea Ice Prediction

Network (Hamilton and Stroeve, 2016; Steele et al., 2021; https://

www.arcus.org/sipn/sea-ice-outlook) since 2008. One difference is

the systematic request for daily data in SIPN South (versus monthly

in general for the SIO, up to a few exceptions). Having the daily

temporal resolution is key to diagnosing the biases that develop at

the sub-seasonal time scale, see Section 3.1. Another difference is

that SIPN South only issues one call per summer while the Arctic

SIO issues four (June, July, August, and September), which allows

studying the influence of lead time on the skill. Finally, SIPN South

requests explicit probability distributions estimates through

individual ensemble members, while the SIO requests aggregated

statistics (median and range). Several co-authors of this study are

also involved in the SIO and ensure frequent exchanges on best

practices in the respective communities.

The year-to-year evolution of the contribution statistics is shown

in Figure 2. The latest forecasting exercise documented in this

manuscript (2022-2023) has seen a record number of contributions

but a slight decrease in the number of files contributed compared to

the previous season, due to one group usually contributing more than

50 ensemble members for all diagnostics not being able to submit

forecasts for this latest exercise.

In order to avoid over-interpretation of the results there are

four caveats to the structure of SIPN South that need to be

acknowledged before any comparison to observations is

performed. First, only six years are available, which is very

limiting when meaningful statistics need to be drawn. With so

few data points, systematic inconsistencies between forecasts and

verification datasets can be difficult to detect. Second, an agreement

between forecasts and verification data is not a guarantee that the
Frontiers in Marine Science 05
skill is obtained for good reasons. Besides the issue of limited

statistical sampling, the SIPN South ensemble can be viewed as an

‘ensemble of opportunity’, i.e., a set of forecasts obtained after

asking for output from anyone who is willing to contribute

(Tebaldi and Knutti, 2007). The implication is that the range of

forecasts contributed to SIPN South is not necessarily

representative of the full range of uncertainty for all prediction

systems that exist. The results presented here might be updated

when more groups contribute to the effort. Third, because

forecasting systems are constantly improving and evolving (e.g.,

physical models, data assimilation methods, observations used,

ensemble perturbation methods), contributions labeled identically

might correspond to slightly different underlying methods. Finally,

no constraint was imposed regarding important aspects that make

up prediction systems such as the dataset used for initialization or

to train statistical models, the method of ensemble perturbation or

uncertainty estimation, the values of specific parameters, or the

application of bias correction step. The reason is that SIPN South

aims to intercompare prediction systems each with its own design

choices. This approach is similar to what has been done in the

Arctic SIO (Blanchard-Wrigglesworth et al., 2015; Hamilton and

Stroeve, 2016; Blanchard-Wrigglesworth et al., 2023).
2.2 Description of the forecasting systems

Since the approach to forecast is at the discretion of each

contributing group, unsurprisingly there is a large variety in the

types of forecasting systems used. Other initiatives to collect real-

time seasonal predictions like the Seasonal Hurricane Prediction

project (https://seasonalhurricanepredictions.bsc.es) and the Arctic

Sea Ice Outlook introduced above also face a high diversity in

forecasting approaches. For these two projects, forecasts have been

categorized as either ‘dynamical’ or ‘statistical’ approaches (Caron

et al., 2020; Steele et al., 2021). Dynamical approaches gather

predictions made using process-based models, i.e., models based

on first physical principles, that are initialized from observationally

constrained initial states. These dynamical approaches include

general circulation models (GCMs), either only for the ocean

(including sea ice) or also coupled to an atmospheric model. By

contrast, statistical approaches gather predictions made using data-

based models, i.e., exploiting statistical predictor-predictand

relationships in past data. This characterization onto dynamical

and statistical models could be criticized, since in practice

dynamical model predictions are often corrected a posteriori with

statistical methods, and statistical forecasts often draw from climate

model output or reanalyses to build empirical relationships. A

description of the approach followed by SIPN South contributors

is given in Table 1. For simplicity, we have assigned a group to

‘dynamical’ approach if it uses a GCM as the foundation of their

prediction system, and to ‘statistical’ approach otherwise.

A group forecast is finally included in the analyses. The group

forecast is constructed as an ensemble forecast of size n with n the

number of contributors that provided data for a given year. For

contributors providing ensemble members, these ensemble

members are first averaged together.
FIGURE 2

The number of individuals or groups that contributed forecasts to
the SIPN South project for each of the austral summers since the
beginning of the project (bars, left y-axis) and the total number of
files contributed by all groups over the same period (line with
squares, right y-axis).
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TABLE 1 List of contributors to the SIPN South austral summer forecasts over the six seasons 2017-2018 to 2022-2023 and description of the method.

Long (+
short) name,
country,
approach
type

Brief method description

AWI-SDAP,
Germany,
Statistical

The forecast consists in a gridded probability of sea ice presence (presence defined as sea ice concentration (SIC) >15%) based on Spatial Damped
Anomaly Persistence (SDAP) using observed OSI-SAF (Lavergne et al., 2019) SIC of the previous ten years. A distinctive feature of the SDAP method
is that it does not operate on individual grid cells. Instead, initial-state anomalies of the ice-edge are spatially “inherited” from the initial ice-edge
location to the surroundings, gradually relaxing from the binary initial state towards the climatological probability of sea-ice presence while
accounting for the seasonal migration of the climatological ice-edge location distribution, as detailed in Niraula and Goessling (2021). This
contribution could not be used for diagnostics involving sea ice areas because it is not possible to derive sea ice area from the probability of ice
presence; see more comments in the discussion. No bias-correction is applied.

Sandra Barreira
et al. (barreira),
Argentina,
Statistical

The model is a three-level (two-level for the earlier version) neural network based on a principal component analysis (PCA). The first level has 17
neurons (i.e., principal components) and the second has 2204 neurons (each PCA separated in 12 different months). The third level has 18336
neurons but only 1344 had enough data until now to be trained. Each neuron was trained with a backward-forward learning technique: the neurons
learn how a month has a determined PCA pattern according to what had happened the months before the occurrence of this pattern (the backward
process); and the neurons also learn what will happen after a given pattern over the next three months (the forward process). After this supervised
learning, the forecast system continues the training automatically (the automatic learning). No bias-correction is applied. The initial data are obtained
from the NSIDC every month (monthly and daily data). The results of the operative version of the model are published every month at the SHN
webpage: http://www.hidro.gov.ar/smara/SB/sb.asp

Barcelona
Supercomputing
Center (BSC),
Spain,
Dynamical

The forecast is taken from the BSC Decadal Prediction System based on the EC-Earth3 Earth System Model in its standard resolution. The
atmospheric component is the IFS (from the ECMWF) with a T255 horizontal resolution (approximately 80 km) and 91 vertical levels, and the ocean
component is NEMO3.6 and the LIM3 sea ice model, both run with an ORCA1 configuration (1∘ horizontal nominal resolution) and 75 vertical
levels. The forecast system consists of a 10-member ensemble of 10-year-long predictions initialized every year in November from 1960 to present.
The components have been initialized using full-field initialization: the atmospheric initial conditions are from the ERA5 reanalysis and the oceanic
initial conditions come from a NEMO3.6-LIM3 simulation forced with historical ERA5 surface fluxes that assimilates ORA-S5 ocean temperature and
salinity at the surface and EN4 temperature and salinity below the surface. The procedure is very similar to the one described in Bilbao et al. (2021)
but with different observational products. The daily Antarctic values were produced by quadratically interpolating the monthly values. No bias
correction was applied to the forecasts.

Environment
and Climate
Change Canada
(CanSIPSv2 and
Modified-
CanSIPS),
Canada,
Dynamical

Three distinct contributions have been submitted to SIPN South.
Modified-CanSIPS provided forecasts for 2017-2018, 2018-2019 and 2019-2020 based on two fully coupled models, CanCM3 and CanCM4, described
in Merryfield et al. (2013). The atmospheric component of CanCM3 is CanAM3 with T63 horizontal resolution and 31 levels, and that for CanCM4
is CanAM4, also T63, with 35 levels. Sea ice is represented on the atmospheric grid for both models, and both employ the CanOM4 ocean component
with 1.41°/0.94°resolution in longitude/latitude and 40 vertical levels. Initial conditions for the atmosphere, sea ice concentration and ocean
temperature are drawn from ECCC’s operational analyses, whereas sea ice thickness is initialized using the SMv3 statistical model described in
Dirkson et al. (2017).
CanSIPSv2, which provided forecasts for 2020-2021 and 2021-2022, is also based on two fully coupled models, CanCM4i and GEM-NEMO, described
in Lin et al. (2020). CanCM4i employs the same model and initialization as CanCM4 in Modified-CanSIPS, whereas GEM-NEMO is based on the
GEM atmospheric model with 1.41° resolution and 79 vertical levels, and the NEMO version 3.1 ocean model with nominal 1° resolution and 50
vertical levels. GEM-NEMO atmosphere, ocean and sea ice initial conditions are drawn from ECCC’s operational analyses. Forecasts from all of these
models employed 10 ensemble members for each model, and were initialized on 30th of November. Daily values for integrated Antarctic sea ice area
and the sea ice area in 10° longitude bands until 28th of February are bias corrected by adding daily anomalies calculated for each ensemble member
to the NSIDC Climate Data record observed 1981-2010 daily climatology.
For 2022-23, CanSIPSv2.1 was used, which differs from CanSIPSv2 in that GEM-NEMO has been updated to GEM5-NEMO.

Centro Euro-
Mediterraneo sui
Cambiamenti
Climatici (cmcc),
Italy, Dynamical

CMCC-SPS3.5 is a fully coupled seasonal forecasting system, based on the CMCC-CM2 coupled climate model (Cherchi et al., 2019). CMCC-SPS3.5
consists of CAM (atmosphere), CLM (land), NEMO (ocean), and CICE (sea ice) sub-components, coupled using the cpl7/mct coupler. CMCC-SPS3.5
forecasts cover a 185-day forecast period, with an ensemble size of 50 members. The system is initialized using ten atmospheric EDA analyses, three
land-analyses (CLM stand-alone forced runs) and nine 3D-var ocean analyses. The 50 initial conditions are randomly chosen among the 270 available
uniquely defined. Sea ice concentration and thickness are assimilated through a nudging scheme. No bias correction is used.

Centre National
de Recherches
Météorologiques
(CNRM),
France,
Dynamical

The forecast is based on Météo-France seasonal forecasting system 8, which is based on a high-resolution version of the CNRM-CM GCM (Voldoire
et al., 2019). The model uses the ARPEGE-Climat atmospheric model, the SURFEX surface component, the NEMO ocean component, and the
GELATO sea ice component that are coupled through the OASIS coupler. A full description of the model and the system is described in a technical
documentation available here: http://www.umr-cnrm.fr/IMG/pdf/system8-technical.pdf. A summary of System 8 characteristics can be found on the
C3S Confluence website: https://confluence.ecmwf.int/display/CKB/Description+of+System8-v20210101+C3S+contribution. Sea ice concentration is
corrected using a simple per-pair bias correction method using the 1993-2016 re-forecast period and NSIDC data https://nsidc.org/data/G02202/
versions/3. Bias correction was applied for the 2020-2021 season but not for other seasons, as the bias correction appeared to have undesirable effects
due to the non-stationarity of the observed mean state over the past years.

European Centre
for Medium-
Range Weather
Forecasts SEAS5
(ecmwf), Europe,
Dynamical

The forecast is based on the ECMWF seasonal forecasting system SEAS5 as described in Johnson et al. (2019). The atmospheric component of SEAS5
is the IFS model cycle 43R1 on a cubic octahedral T319 grid (ca. 36 km horizontal resolution) and 91 vertical levels. The ocean component is
NEMO3.4 with LIM2 as a sea-ice model, using the ORCA025 grid (ca. 25 km spatial resolution) with 75 vertical levels. The forecast is an ensemble of
51 members. Initial conditions for the atmosphere come from the ECMWF ensemble of data assimilations (EDA) augmented with singular vectors,
and initial conditions for the ocean come from the 5-member ECMWF ocean reanalysis/analysis system OCEAN5. Model uncertainty is represented
by applying stochastic perturbations to the physical tendencies (SPPT) in the atmosphere. No bias correction has been applied to the daily sea-ice
concentration fields prior to computing regional and pan-Antarctic sea ice extent.
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TABLE 1 Continued

Long (+
short) name,
country,
approach
type

Brief method description

National Centers
for
Environmental
Predic–ion -
CFSv2 (emc),
USA, Dynamical

The forecast is based on CFSv2, a fully coupled sub-seasonal to seasonal forecast system which was implemented for operation in April 2011 (Saha
et al., 2014). CFSv2 consists of the component models of the NCEP GFS atmosphere with a T126 horizontal resolution (approximately 100 km) and
64 vertical levels, NOAH land (the same model grid as the atmospheric model), GFDL MOM4 ocean model and sea ice simulator (with slight
modifications). The ocean model uses tripolar grids, northward of 65°N it uses a rotated bipolar grid that places two poles over land, thus eliminating
the singularity in the northern ocean, while southward of 65°N it uses a regular latitude × longitude grid. The horizontal layout is a staggered
Arakawa B grid. The zonal resolutio½s 1/2°, the meridional resolutio¼s 1/4° between 10°S and 10°N, gradually increasin½o 1/2° poleward of 30°S and
30°N. There are 40 layers in the vertical. The sea ice grid is the same as the ocean. CFSv2 is run daily with 16 ensemble ensembles for 45 days, 7
ensemble members for 3 months and 4 members for 9 months, with 6-hourly output. No bias correction is applied to the forecast.

First Institute of
Oceanography
Earth System
Model (FIO-
ESM), China,
Dynamical

Satellite-derived daily sea surface temperature and sea level anomaly are assimilated into the fully-coupled model FIO-ESM using an Ensemble
adjustment Kalman Filter (Qiao et al., 2013; Chen et al., 2016) to initialize the model. The FIO-ESM is based on the CAM3.0 atmospheric model, on
the CLM3.5 land model, on the CICE4 sea ice model and on the POP2.0 ocean model. 10 ensembles were generated by a tiny-perturbing method.
Bias correction is used through removing the monthly sea ice area biases.

Antarctic
Gateway
Partnership
(Gateway),
Australia,
Statistical

The historical seasons (Jun-Oct) with the most similar sea ice area growth rates as the current ones are retained. These seasons are then used these to
extrapolate to February next year.

Geophysical
Fluid Dynamics
Laboratory
(gfdl), USA,
Dynamical

The forecast is based on the fully-coupled global atmosphere-land-ocean-sea ice model SPEAR_MED (1° ice-ocean resolution, 0.5° atmosphere-land
resolution; see Delworth et al. (2020)) that is initialized on December 1 using a weakly coupled ensemble data assimilation system (Lu et al., 2020). 30
ensemble members are integrated for one year. Daily sea ice area predictions are bias corrected using a lead-dependent linear regression adjustment
based on a suite of retrospective seasonal predictions (Bushuk et al., 2021). Sea ice concentration predictions are not bias corrected.

Columbia
University Sea
Ice Group
(Lamont), USA,
Statistical

The forecast consists of a linear Markov model that predicts Antarctic SIC at the seasonal timescale using monthly atmospheric reanalysis variables
and satellite-observed sea ice concentration data. The model was trained in the multivariate space of seven NCEP/NCAR atmospheric variables (SAT,
SLP, Uslp, Vslp, 300mb heights and U300, V300) and NASA-Team SIC for the period of 1980 to 2000. The predictions were made by the linear
Markov process for several leading MEOF modes. Cross-validated model experiments evaluated the prediction skill (Chen and Yuan, 2004). No bias
correction is applied to the forecast. The daily values are obtained by quadratic interpolation of the monthly values provided.

NSIDC Meier
(Meier-NSIDC),
USA, Statistical

The model extrapolates daily sea ice loss from the initialization date through the end of the season. Daily sea ice loss for the extrapolation is based on
the average daily loss from 2007 through the most recent year. Because there is high variability in ice daily ice loss, early season (e.g., 3-month)
predictions are not expected to have high skill, but skill increases with shorter forecast times. The method provides a shrinking envelope of the likely
range of values and provides a baseline for comparison of more sophisticated methods. The source data are the NSIDC Sea Ice Index (http://
nsidc.org/data/seaice_index/). Daily extent values are used here because concentration/area are underestimated by the NASA Team algorithm used in
the Sea Ice Index; thus, extent likely provides a better indication of true ice coverage. No bias-correction is applied.

Met Office
GloSea
(MetOffice), UK,
Dynamical

The forecasts are obtained from the fully coupled seasonal forecasting system GloSea based upon the HadGEM3 coupled climate model (MacLachlan
et al., 2015). GloSea uses the MetUM (atmosphere) and JULES (land) models at N216 resolution (~60 km in midlatitudes), coupled to the NEMO
(ocean) and CICE (sea ice) models (~1/4° resolution) coupled using OASIS. GloSea forecasts are run daily out to 210 days and initialized using Met
Office operational analyses (mixed 4DVar and 3DVar). Sea ice concentration is assimilated but not yet sea ice thickness. GloSea uses a lagged
ensemble approach where 2 ensemble members are run each day and combined with members from previous days to create a 42-member ensemble.
No bias correction is used.

MPAS CESM
(mpas-cesm),
USA, Dynamical

The CESM-CAM-MPAS v1.4.b7 is run as a fully-coupled atmosphere-land-ocean-sea ice model with MPAS as the atmospheric dynamical core on a
quasi-uniform 60km grid and the rest of the components ~1 degree grid spacing. Forecasts are initialized on Dec 1st using GFS analysis for the
atmosphere and analog restarts from the CESM Large Ensemble for the other components.

NASA GMAO
(nasa-gmao),
USA, Dynamical

The NASA GMAO seasonal forecasts are produced with the Goddard Earth Observing System (GEOS) AOGCM (GEOS-S2S_2.1) (Rienecker, 2008;
Molod et al., 2015). The atmospheric component is a recent version of the GEOS atmospheric model, run at 0.5°horizontal resolution with 72 vertical
layers. This version includes two-moment cloud microphysics and an interactive aerosol chemistry model. The ocean component is version 5 of the
GFDL Modular Ocean Model (MOM5) (Griffies, 2012) implemented here at a horizontal resolution of 0.5 degree with 40 vertical layers. The land
component is the Catchment Land Surface Model (Koster et al., 2000). Sea ice is represented with the Los Alamos Sea Ice model (CICE4) (Hunke
and Lipscomb, 2010). The system is initialized using MERRA-2 atmospheric reanalysis (Gelaro et al., 2017) and the GMAO Interim Ocean Analysis.
The analysis incorporates sub-surface temperature and salinity data from available CTDs and Argo floats, temperature data from XBTs and moored
arrays, and along-track altimetry. The analysis is nudged to the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, Donlon et al.
(2012)) sea surface temperatures, and uses the EUMETSAT OSI-SAF sea ice concentration provided with OSTIA. Ensemble members are produced
with initializations on 12-Nov, 17-Nov, 22-Nov, and 27-Nov. An additional 6 ensemble members are initialized on 27-Nov using ocean and/or
atmosphere analysis perturbations.
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2.3 Observational references

Two observational references were used for verification of the

forecasts: the NSIDC-0081 product using the NASA Team

algorithm for sea ice concentration reprocessing (Meier et al.,

2022) and the OSI-401b product using the Bristol/Bootstrap

algorithm (Tonboe et al., 2017). The choice of these products was

made based on the near-operational availability of the datasets, but

also to test the possible dependence of target diagnostics (sea ice
Frontiers in Marine Science 08
area and concentration) on the choice of the reprocessing

algorithms (NASA Team vs Bristol/Bootstrap). Our choice of

using two products for forecast verification is motivated by the

fact that observational errors introduce variability in skill metrics

(Massonnet et al., 2016; Ferro, 2017; Mortimer et al., 2020; Lin

et al., 2021).

The two products also display non-negligible differences in

land-sea masks: for instance, the area covered by ocean south of

60°S differs by about 7.5% between the two products (46.93 million
TABLE 1 Continued

Long (+
short) name,
country,
approach
type

Brief method description

NASA-GSFC,
USA, Statistical

The forecast is obtained from a statistical model that uses monthly sea ice concentration (SIC) data (1979-present day), derived from passive
microwave brightness temperatures using the NASA Team algorithm. The historical SIC data for the given forecast month are detrended in-time for
each grid-cell using linear regression as is the historical sea ice extent (SIE) for the month being forecast. A least-squares linear regression model is fit
from the detrended SIE data and the mean detrended SIC data (weighted by the correlation coefficient to focus on regions of higher predictability).
The monthly mean/detrended SIC data from the given forecast year are applied to the linear regression model to produce a seasonal forecast. The
approach is the same as in the seasonal Arctic forecasts of Petty et al. (2017). To produce the daily Antarctic forecasts, multiple months are forecast
and a quadratic curve is fit to interpolate the monthly values to daily.

Nico Sun
(NicoSun),
Europe,
Statistical

The forecast model is based on sea ice persistence. It uses incoming solar radiation and sea ice albedo derived from a predicted Sea Ice Concentration
(SIC) value to calculate daily thickness losses for every NSIDC 25km grid cell. The initial thickness is calculated from GIOMAS sea ice volume and
NSIDC SIC data. The mean forecast uses the mean SIC over the previous 10 years (1/3 weight) and mean SIC change per day (2/3 weight) to predict
future SIC. The low forecast reduces the predicted SIC by 0.25 standard deviation for previously observed SIC for this day. The high forecast
increases the predicted SIC by 0.33 standard deviations.

SINTEX-F2,
Japan,
Dynamical

The forecast is based on the fully coupled seasonal prediction system based on ECHAM5 (~1 deg, 31 levels) atmospheric model and NEMO3 (0.5
deg, 31 levels) ocean-sea ice model (Doi et al., 2016). SINTEX-F2 seasonal prediction system used in this study was run monthly on Earth Simulator
with SST and sea ice concentration (SIC) initializations, in which the model’s SST and SIC are nudged to the OISSTv2 dataset. 24 ensemble members
with SST (12 members) and SST-SIC (12 members) initializations are analyzed.

Sun-Yat Sen
University
(SYSU), China,
Statistical

Three distinct contributions have been submitted to SIPN South.
SML-kNN: A machine learning algorithm (kNN for K-Nearest Neighbors) is used in this prediction. The model was trained using daily Antarctic SIC
in a 25 × 25 km grid obtained from the NSIDC for the period of January 1989 to March of the initialization year. The climatological annual cycle of
SIC had been subtracted at each grid point prior to the training. To produce the daily Antarctic forecasts, the principle is to find the K nearest
neighbors of the input variables from the training library. The prediction is then obtained by point-by-point calculation, and the Euclidean distance
was set as distance weighting. No bias correction is applied to the forecast.
SML-ConvLSTM: A Convolutional Long Short-Term Memory networks (ConvLSTM)[1] is used in the way of self-supervised learning in this
prediction. ConvLSTM combines the (Convolutional Neural Network)CNN which can extract the spatial information, with LSTM, which is a kind of
Recurrent Neural Network(RNN) and can extract the time information. In this way, ConvLSTM networks are powerful tools for intricate spatial-
temporal sequence prediction problems. The NSIDC-0051/0081 SIC data are used in this experiment. The model tries to extract the spatial-temporal
relationship from 15861 samples of 90days-90days sequence, in which the later 90-day is 90-day lag for the former 90-day. After training, we use the
90-day data before 1st December, 2022 as the feature data, and acquire the label data predicted from 1st December, 2022 to 28th February, 2023. We
also acquire the long term by the same way, changing the time resolution from daily to monthly, initializing in November, 2022, and changing the
length of time series from 90-day to 24-month. Our long-term prediction period is from December, 2022 to December, 2024. Reference: (Shi et al.,
2015)
SML-MLM: A multivariate linear Markov model is used in this prediction. The model use sea ice concentration, surface air temperature, sea level
pressure, surface winds,300-hPa winds and 300-hPa geopotential height as predictors. We use the above parameters from 1989 to 2019 to train our
model.

UCLouvain
(ucl), Belgium,
Dynamical

An ocean-sea ice model (NEMO3.6 ocean model, LIM3 sea ice model, ~1° resolution; Barthélemy et al. (2018)) simulation is forced by atmospheric
reanalyses (JRA-55) until the 1st of November. Then, 10 ensemble members are integrated until 28th of February. Each member is using a distinct
atmospheric forcing from the 10 previous years. No bias correction is applied to the forecast. The method is similar to that applied to the Arctic Sea
Ice Outlook.

University of
Washington
(UW), United
States,
Dynamical

The UW forecast is made with the CESM1-CAM5 fully-coupled model at a nominal 1-degree resolution and 30 layers in the vertical in the
atmosphere model. We run the model up to Nov 30, 2022, under RCP8.5 forcing and with winds above the boundary layer nudged to observations
(ERA-5 reanalysis) poleward of 45 degrees (extending the runs described in Blanchard-Wrigglesworth et al, 2021). The nudged runs capture a
significant portion of sea ice and SST variability, and serve to ‘initialize’ the forecast runs, which are run from November 30, 2022, to Dec 2024 in a
‘free-running’ mode (without nudging). The SIPN South forecasts are computed by calculating a sea ice area forecast anomaly of the forecast runs
with respect to CESM1-Large Ensemble, and then the forecast anomaly is applied to the observed climatology of sea ice area.
Note that not all contributors participated in all six forecasting seasons.
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km2 for NSIDC-0081 vs 50.76 million km2 for OSI-401b), likely due

to differences in spatial resolution and in the treatment of landfast

ice and ice shelves. These differences in land-sea masks and in

reprocessing algorithms in observational references are to be kept in

mind when interpreting SIPN South forecast errors, as these

forecast errors can also have a component originating from the

verification data itself.

NSIDC-0081 does not extend back prior to 2015 and OSI-401b

does not extend back prior to 2005. Long-term climatologies were

thus estimated with a third product, namely the OSI-450 dataset

(Lavergne et al., 2019) recently superseded by the OSI-450a

product, over the period 1979-2015. Note that the estimated

climatologies are relatively insensitive to the choice of the

observational product (see, e.g., Figure 1A of Roach et al. (2020)

or Figure 3B of Lin et al. (2021)).
2.4 Climatological forecast

When assessing forecast skill, it is advisable to define a

benchmark forecast (also known as the ‘baseline’ or ‘reference’

forecast) that is cheap to construct. The goal of such a benchmark

forecast is to help establish whether the other forecasts outperform a

naive prediction. In our case, the benchmark forecast is defined as

the climatological forecast, comprising a 30-member ensemble

corresponding to the 30 sea ice states of the 30 years preceding

the target season. For example, the benchmark forecast for the

2020-2021 December-January-February forecasting season consists

of the observed sea ice areas and concentrations of the December-

January-February 1990-1991, 1991-1992, … 2019-2020 seasons.

The climatological forecast is based on the OSI-401b product of

sea ice concentration after 2015, and on the OSI-450 product before

2015. It is labeled “climatology” in the figures.

We are aware that other benchmark forecasts could have been

introduced at this stage, such as: the trend extrapolation (sea ice

area at day D is extrapolated from the linear or quadratic trend

fitted to the previous areas at day D from previous years), the

persistence forecast (sea ice area at day D is equal to the sea ice area

at the initial time, i.e., 1st of December), the anomaly persistence

forecast (sea ice area at day D is the sea ice area anomaly at the

initial time added to the climatological sea ice area at day D), the

damped anomaly persistence forecast (wherein the previous

forecast is weighted by the auto-correlation of the time series),

and many more. While looking simple in their formulations, these

alternative benchmark forecasts are not always straightforward to

implement for timeseries that are characterized by marked seasonal

cycles in the mean, in the trend, and in the variability of sea ice

concentration. In addition, producing ensembles of forecasts is not

straightforward as these alternative benchmarks are deterministic

by nature. Constructing ensemble statistics for these alternative

benchmarks would require making assumptions on the statistical

structure of the anomalies (e.g., accounting for autocorrelation in

the time series, gaussianity or not, heteroscedasticity or not), which

would in turn mean that we have created a new statistical model in

its own right. For these reasons, we stick to the climatological

forecast that requires no assumptions other than the number of
Frontiers in Marine Science 09
years included. Note also that, since the long term trend of Antarctic

sea ice extent is near-zero, a climatology benchmark is appropriate

(unlike in the Arctic).
2.5 Domain boundaries

For regional analyses, we split the Southern Ocean into five

regions following common definitions used in previous studies

(Massonnet et al., 2013). The relevant regions are the Weddell

Sea sector (60W-20E), the Indian sector (20E-90E), the West Pacific

sector (90E-160E), the Ross Sea sector (160E-130W), and the

Amundsen-Bellingshausen Seas sector (130W-60W). We refer to

“Antarctic” or “circumpolar” when we mean the full 180W-180E.

The five regions are shown on the map of Figure 1.
2.6 Data and code availability

The SIPN South project is intended to be a community project

whereby anyone can produce diagnostics and analyses based on the

data contributed. All the scripts, codes, and data are available from

the SIPN South GitHub repository. The figures shown in this paper

were generated from the release https://github.com/fmassonn/sipn-

south-public/releases/tag/published.
3 Results and discussion

3.1 Does the SIPN South ensemble exhibit
systematic forecast errors?

To answer that first question, we consider the forecast

distribution of February mean sea ice area at the regional and

circumpolar scales, along with the two verification datasets

introduced in Sec. 2.3 (Figure 3). The plots presented in the

figure summarize the bulk of the forecast distribution (group

median and 10-90% range) as well as forecasts outside this range.

Figure 3 also displays the historical distribution of the

corresponding observed sea ice areas (1979-2015) following the

same conventions as the forecast distributions. These historical

distributions confirm that sea ice area in the six previous years has

been anomalously low, in line with Figure 1. All regions have

contributed to create these circumpolar negative anomalies. The

Ross Sea has featured the largest reductions.

The first result is that observational uncertainty (indicated by

the difference between the pair of black dots in Figure 3) is generally

small in comparison to forecast uncertainty, apart from the Indian

Sector, where it can be comparable to the 10-90% forecast range, as

in 2020. The Indian Sector is, however, the region with the smallest

climatological sea ice area (~5% of the circumpolar area). In

absolute value, the observational spread is comparable to the

observational spread in other sectors (~0.1 million km2

maximum), but the apparent spread is magnified by the fact that

the amount of sea ice to predict is very limited.
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A second result is that the circumpolar SIPN South range of sea

ice areas bracket observations for all years (Figure 3). The SIPN

South forecast ensemble is therefore not incompatible, in a

statistical sense, with the observations for the total sea ice area.

Interestingly, for each year, the medians lie below the 1979-2015

climatological median (horizontal dashed line), suggesting that as a

group, the SIPN South forecasts capture well the tendency since

2015 of sea ice area to lie on the low side of the climatological

distribution. This gives credit to the SIPN South forecast ensemble

having added value over a trivial climatological forecast. We note

finally that the historical climatological distribution would be a poor
Frontiers in Marine Science 10
forecast given that all six recently observed states lie below the 10th

climatological percentile.

Analyzing regional forecasts allows us to establish whether the

total circumpolar sea ice area forecast skill is obtained for the right

reasons or thanks to error compensations at the regional scale. The

SIPN South forecasts perform generally well in the Weddell Sea, in

the West Pacific, and in the Amundsen-Bellingshausen Seas sectors:

in those regions, the two observational datasets fall within the

forecast range. We have deliberately not reported skill statistics as

the sample size (n = 6 years) is very low. The Ross Sea stands out as

the region with large systematic errors. The median systematically
FIGURE 3

Distribution of the SIPN South forecasts and observed February mean sea ice areas for each of the forecasting seasons. The blue intervals represent
the SIPN South distribution (10-90%), with the blue square referring to the ensemble median. The blue dots are those forecasts falling outside the
10-90% bulk of the distribution. The two black crosses denote the observational references. The red interval, square, and dots are the corresponding
estimates for the climatological forecast. The light horizontal dotted line is drawn from the median to facilitate the comparison between the
forecasts and the climatological state.
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overestimates the observed values and the observations lie at the

edge, if not outside, of the 10-90% forecast range, for reasons that

we will discuss in the next section.

Since Figure 3 displays February means, it does not convey

information about how the sea ice area was forecast between

initialization time (1st of December) and the target month of

February. Figure 4 shows the daily evolution of the circumpolar

sea ice area (forecast and observed) for the 2022-2023 exercise, for

the subset of statistical and dynamical contributions. A striking

pattern, also seen for all five previous forecasting seasons (see

Supplementary Material), is clear: on average, the SIPN ensemble

starts biased high for the circumpolar area; then, from mid-

December to mid-January, melt rates are largely overestimated

compared to observational references (Figure 4, right column).

This feature is particularly evident for dynamical model

contributions but is also shared by one statistical contribution.
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In dynamical model contributions, several reasons can explain this

general overestimation of sea ice area at initial time: issues in the

initialization procedure or biases in the winter mean state. Regarding

the initialization procedure, at least one group (Met Office) follows a

“lagged” approach meaning that the ensemble of initial conditions is

drawn from the 21 previous days’ (twice a day) states before the

initialization date (1st of December). Due to the seasonality of the sea

ice area, all corresponding 42 states display a larger sea ice area than the

one on Dec 1. For other contributions (e.g., ucl), the source of the

problem is different. The ocean–sea ice model exhibits a well-known

positive late winter bias in sea ice area (Barthélemy et al., 2018;Massonnet

et al., 2019) causing excessive melt rates during the spring season. The

origins of this winter bias have not been identified yet but appear to be

common to other dynamical models. In statistical contributions, the

initial overestimation is less evident: the forecasts appear to be more

clustered around the observed state at initial time. An interesting feature
FIGURE 4

(Left column) Daily Antarctic sea ice area forecast by the groups participating in the 2022-2023 exercise, separated in (top) statistical contributions
and (bottom) dynamical contributions. When several ensemble members are submitted by a group, the mean of the distribution is considered. The
verifying observational references are shown as thick black lines. The climatological forecast is shown as the black dotted line. (Right column)
Running weekly melt rates, computed for day d as the value of the timeseries of the left panel at day d minus the value at day d − 7. The same
figures for previous years are shown in the Supplementary Material.
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is that the climatological forecast itself is biased high on December 1st,

consistently with the recent negative anomalies displayed in Figure 1.
3.2 Do SIPN South forecasts provide added
value over climatological benchmarks?

With only six seasons of forecasts (2017-2018 to 2022-2023),

delivering firm statements on the ability of forecasts to predict

interannual variations in sea ice area skill is beyond reach. However,

most contributions consist of ensembles of forecasts, so a few

conclusions can at least be drawn on the appropriate dispersion

properties of individual submissions. To exemplify several aspects

of forecast characteristics, we show in Figure 5 the fitted probability

density functions of the February mean sea ice area for all groups

that participated in the 2022-2023 forecasting season as well as for

the climatological forecast. We first note that, in general, statistical

model contributions provide fewer ensemble members than

dynamical model contributions. A possible reason is that

delivering ensemble forecasts has long been standard practice in

the weather and climate prediction communities, which frequently

construct ensembles to produce probabilistic assessments. Statistical

approaches are based on simpler models where it is not always clear

how uncertainty should be sampled. All members (colored crosses)

in Figure 5 should be viewed as equally plausible forecasts within

each submission, except for the NicoSun contribution where each
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member corresponds to three scenarios of high melt, medium melt,

and low melt, respectively.

The first feature that is apparent from Figure 5 is the large

variability in the shapes of the forecast distributions. Several

contributions are underdispersive (or overconfident) in the sense

that the observed value is statistically incompatible with the forecast

distribution (e.g., barreira, gfdl). The lack of bias correction is one

plausible reason for this behavior. Other contributions are

overdispersive (or underconfident) in the sense that the forecast

distribution is much wider than the climatology (e.g., SINTEX-F2).

Neither underdispersive nor overdispersive ensemble forecasts are

desirable from a decision-making point of view: underdispersive

forecasts are sharp but most often do not include the actual

outcome, while overdispersive forecast distributions most often

include the actual outcome but are overly flat.

Striking a good balance between bias (i.e., how far the forecast

mean is compared to the verification value) and spread (i.e., how

uncertain is the forecast) is essential in ensemble forecasting. The

ability to reach a good tradeoff can be measured with a single metric,

namely the continuous rank probability (CRPS). The CRPS is a

generalization of the Brier Score to continuous variables (Jolliffe and

Stephenson, 2003) and measures the area under the squared

difference between the cumulative density function of the forecast

distribution and the cumulative density function of the

observations, i.e., a step function at the observed value. The CRPS

is a convenient metric because it penalizes forecasts that are

systematically biased high or low, but also forecasts that are

excessively spread out. According to the definition, a CRPS value

of zero is obtained for a perfect forecast with the mass of the

distribution centered at the verifying observation value, and larger

CRPS values correspond to less skillful forecasts.

The CRPS values for all six forecasting seasons are reported in

Table 2. Caution should be exercised when interpreting the results

in this table since the CRPS, like any metric of performance, is

sensitive to sampling issues. Nevertheless, several interesting

features are noted. First, no obvious relationship emerges between

the type of forecasting approach and the CRPS metric: the statistical

and dynamical sub-groups score an average value of 0.57 and 0.49

million km2 squared for the six forecasting seasons, respectively.

Second, we note that 51% (42 out of 82) predictions are superior, in

a CRPS sense, to the climatological forecast. This proportion raises

to 65% (22 out of 34) for the last two seasons when an all-time

minimum occurred (2021-2022 and then 2022-2023). Several

individual contributions systematically outperform that

benchmark forecast. Finally, the group forecast, obtained by

aggregating individual forecasts (see Sec. 2.3) is systematically

more skilled than the climatological forecast and more skilled

than most of the individual forecasts. We also note that the CRPS

of the statistical and dynamical sub-group forecast is more skilled

than the average CRPS within each respective group. This behavior

is reminiscent of what is observed with the multi-model mean in

climate change simulations, and is likely explained by the

cancellation of random errors that characterize individual forecasts.
FIGURE 5

Distribution of the February mean circumpolar sea ice areas forecast
by the groups participating in the 2022-2023 season and the
verifying observations (vertical dashed lines). The color coding
follows the same conventions as in Figure 4. The probability density
functions are drawn with a kernel-density estimate using Gaussian
kernels.
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3.3 Is there a relationship between
forecasting approach and skill?

The previous section has hinted at the fact that, from a circumpolar

point of view, no sub-group of forecasts (statistical or dynamical)

outperforms the other. The results have also suggested the value of
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aggregating the individual forecasts to produce a group forecast. On the

other hand, Section 3.1 has shown that the skill is region-dependent in

the SIPN South ensemble. To assess the ability of the prediction systems

to capture the regional distribution of sea ice concentration, we compute

the Integrated Ice Edge Error (IIEE, Goessling et al. (2016)). The IIEE is

the areal integral of all grid cells where the forecast and the verification
TABLE 2 Continuous Rank Probability Scores (CRPS) for the February mean Antarctic sea ice area forecasts, for each of the forecasting seasons of the
SIPN South project.

2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 2022-2023

climatology 0.37 0.20 0.19 0.24 0.51 0.66

Statistical models

barreira / 1.64 0.41 0.51 0.80 1.02

Gateway 0.71 / / / / /

Lamont 0.22 0.79 0.17 0.42 0.77 1.54

Meier-NSIDC / / / / 0.69 1.17

NASA-GSFC 0.47 0.15 0.42 0.38 0.51 0.59

NicoSun 0.22 0.20 0.15 0.12 0.25 0.22

SYSU-SML-KNN / / / 0.18 0.49 0.63

SYSU-SML-ConvLSTM / / / / / 0.53

SYSU-SML-MLM / / / / / 1.22

Statistical group forecast 0.18 0.30 0.21 0.20 0.52 0.65

Dynamical models

BSC / / / / 0.10 0.88

CanSIPSv2 / / / 0.13 0.14 0.05

cmcc / 0.12 / 0.65 0.57 0.43

CNRM / / 0.08 1.68 1.61 /

ecmwf 0.49 0.92 0.43 0.32 0.69 0.56

emc 1.14 / / / / 1.89

FIO-ESM 0.52 0.30 0.57 0.31 0.44 0.46

gfdl / / / / 0.49 0.60

MetOffice 0.04 0.45 0.26 0.08 0.51 0.39

Modified-CanSIPS 0.21 0.20 0.36 / / /

mpas-cesm 0.70 / / / / /

nasa-gmao 0.28 0.56 0.79 / / /

SINTEX-F2 / / / 1.36 0.39 0.86

ucl 0.09 0.13 0.10 0.13 0.28 0.16

UW / / / / / 0.23

Dynamical group forecast 0.19 0.27 0.18 0.20 0.17 0.22

Group forecast 0.18 0.19 0.13 0.15 0.24 0.31
Units are million km2 squared. The contributions are separated into statistical and dynamical sub-groups. The CRPS are in bold font when the forecast performs better than the climatological
forecast. The “Statistical group forecast”, the “Dynamical group forecast” and the “Group forecast” rows show the CRPS obtained by aggregating the data from the corresponding sub-groups or
entire ensemble, respectively (see Sec. 2.2).
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disagree on a certain event, defined here as sea ice presence (SIC > 15%).

For one-member forecasts, the calculation of the IIEE is straightforward:

the spatial fields of SIC are converted to 1 or 0 based on the 15% SIC

threshold and the resulting binary field is compared to the observed

binary field of ice presence. The areas of grid cells where sea ice is

present in observations but absent in the forecasts, or absent in

observations but present in the forecasts are then summed. For multi-

member forecasts, the calculation is slightly different: binary fields of sea

ice presence are defined for each member individually, and a probability

of sea ice presence is calculated by averaging the binary fields across the

ensemble. The areas of grid cells where sea ice present in observations

but present with < 50% probability in the ensemble, or absent in

observations but present with > 50% in the ensemble, are then summed.

To compute the IIEE, all forecasts and verification data were first

remapped (nearest-neighbor interpolation) to a 2° by 2° regular grid.

The IIEEs for the 2022-2023 forecasting season are shown in Figure 6.

In line with Figure 4 (circumpolar sea ice area daily time series), dynamical

predictions in general exhibit larger initial errors than statistical predictions.

These initial errors in dynamical predictions develop throughout the

melting season until ~1st of January, before a sharp reduction towards

themonth of February. For thatmonth, no type of prediction appears to be

superior to another for the IIEEmetric. The group forecast has an IIEE that

is among the lowest from early February, confirming at the regional scale

the conclusions obtained at the circumpolar scale.
4 Conclusions, perspectives,
and recommendations

The SIPN South project was initiated in 2017, i.e., one year after the

beginning of a series of anomalously low sea ice conditions in the

Southern Ocean (Figure 1). The non-stationary character of sea ice area

anomalies suggests that climatological forecasts could be of limited value

for seasonal prediction. An important finding of this study is that several
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prediction systems, based on both statistical and dynamical modeling,

are consistently more skillful than the climatological forecast. The group

forecast, obtained by aggregating all individual forecasts, is found to

outperform the climatological forecast and the majority of individual

forecasts themselves for two standard metrics of performance, the

continuous rank probability score and the integrated ice edge error.

The Ross Sea appears to be the sector where sea ice prediction is the

most challenging and where spread is the largest, although a recent

study (Payne et al., 2022) demonstrates moderate skill in the sector with

a dynamical model. While we have not attempted here to understand

the sources of prediction errors and why they vary regionally, we can

formulate hypotheses. The Ross Sea summer sea ice concentration

anomalies are linked to the spring sea ice drift and thickness anomalies

in the neighboring Amundsen Sea sector. In observations, westward

coastal currents transport sea ice toward the Ross ice shelf during the

spring season, and sea ice is then advected offshore by the dominant

southerly winds (e.g., Holland and Kimura, 2016). This coupled

dynamical process is difficult to simulate at the resolution of current

ocean-sea ice dynamical models (Holland et al., 2014). In addition, the

statistical models participating in SIPN South (Table 1) do not consider

the initial sea ice thickness as a predictor except for one (NicoSun),

which turns out to be performing relatively well. The poor performance

of forecasts in the Ross Sea could also be explained by the fact that

predictability is inherently lower there compared to other sectors. In

dynamical model predictions, ensemble spread is usually the largest in

the Ross sea (not shown), which supports this idea of limited initial-

value predictability in that sector.

Several studies have reported long-range (>1 yr) sea ice

predictability thanks to mechanisms of reemergence (e.g., Holland

et al., 2013; Marchi et al., 2019) and the results of SIPN South might

appear disappointing, at least in light of the initial prospects raised in

these perfect predictability studies. The ocean-to-sea ice connection

that brings the long-range predictability of surface conditions is more

direct in winter (since the deep mixing causes direct interaction),

whereas the summer connection requires simulation of more complex

process (mixed layer shoaling, ice-albedo feedback, vertical mixing,

etc.), which is likely not captured by the current models.

The results of this study have highlighted that dynamical models,

even when they are initialized with observed or reanalyzed ocean-sea ice

states, exhibit a positive bias in sea ice area at initial time but no bias at

the sea ice minimum, implying excessive sea ice area losses during the

melting season. The reason could be that the dynamical contributions

are initialized with different products from the ones used for verification.

More diagnostics (e.g., tendencies in sea ice concentration due to

thermodynamic and dynamic processes) would be required to

pinpoint the deficient physical mechanisms in these models.

For the metrics of performance introduced in this paper, the

statistical models appear to perform better than the dynamical models

for predicting the spatial information during the melting season

(December and January, see the IIEE curves in Figure 6).

Nonetheless, a limitation of statistical contributions is that most of

them are deterministic, i.e., provide only one prediction (the NicoSun is

an exception, providing forecasts as a range of three scenarios: lowmelt,

medium melt, high melt). The deterministic nature of most statistical

forecasts is contrasted by the large ensemble size in dynamical models,

exceeding 50 ensemble members for several dynamical contributions,
FIGURE 6

Integrated Ice Edge Error (see the text for definition) for the
contributions providing the sea ice concentration information. The
color coding follows the same conventions as in Figure 4. The black
curve is the benchmark climatological forecast (see Section 2.4) and
the thick blue curve is the IIEE of the group forecast. The reference
product for the IIEE calculation is the NSIDC-0081 product, and the
grey curve shows the IIEE of the alternative verification product
OSI-401-b.
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and can be regarded as a serious limitation to the use of these statistical

predictions by stakeholders. Stakeholder-relevant diagnostics like the

probability of sea-ice presence (i.e., the probability of observing sea ice

concentration above 15% at a given point at a given day) cannot be

reliably estimated with statistical models alone when they provide only

one or even three ensemble members. In this context it is worth

mentioning that one of the statistical SIPN South contributions,

AWI-SDAP, provided just that probability of sea ice presence instead

of sea ice concentration (although only for one year). However, this

contribution could not be included in all analyses because it is not

possible to derive sea-ice area from the probability of ice presence. In

future intercomparison studies, we might thus recommend submitting

forecasts of the probability of sea ice presence directly.

The conclusions presented here draw on six seasons of

coordinated sea ice predictions since 2017. One of the novel

aspects of SIPN South is that it collects predictions done in a

real-time context with the best possible information available at

the time of submission by each group. These predictions

differ from hindcasts (retrospective forecasts) that are less

constrained by data unavailability (since ocean/atmosphere/

sea ice reanalyses are released with a couple of weeks or

months of delay). Also, hindcasts might exhibit larger skill

than real-time forecasts due to the fact that the models are,

consciously or not, continuously adapted and tuned to represent

new climatic situations.

The principal value of the SIPN South community effort is to

identify and engage contributors on best practices, while exploring the

current skill in forecasting austral summer sea ice conditions. We are

aware that we might miss potential contributions from individuals,

groups, or institutions that are not registered on those lists or on social

media. We will continue to regularly collect forecasts for the summer

season, and are currently expanding the protocol for other seasons. The

possibility to submit more diagnostics such as sea ice drift and

thickness, oceanic mixed layer depth and heat content, will be added

to the SIPN South protocol to better partition forecast errors between

initial-condition uncertainty and model uncertainty. We will also

consider developing near-operational benchmark datasets beyond

simple climatology. Future work will also include a more systematic

evaluation of skill at the regional scale, will accept longer forecasts (out

to fall and winter), and will allow contributors to re-submit forecasts in

a hindcast context, i.e. when all datasets at initial times are available.
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