Automatic Weather Station Observation Strategies and Hardware Updates

Lee Welhouse¹,³, David Mikolajczyk¹,², Matthew Lazzara¹,³,⁴, Taylor Norton¹,², George Weidner¹,², Linda Keller¹,², Andy Kurth⁴, Forbes Filip⁴, Josh Thorsland⁴, and John Cassano⁵

¹Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin-Madison
²Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison
³Dept. of Physical Sciences, School of Arts and Sciences, Madison Area Technical College
⁴Dept. of Electrical Engineering Technology Department, School of Applied Science, Engineering and Technology, Madison Area Technical College
⁵Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder

Workshop on Antarctic Meteorology and Climate, 2021
Outline

• Hardware Updates:
 • Discontinued products
 • Satellite Comms
 • Temperature Measurement

• Observational Strategies
 • Past method
 • Instantaneous and 10 Min averages
 • Proposed method
 • WMO standard for each instrument
Discontinued Products

• Argos ST-21
 • These are the primary transmitter for the CR1000 systems
 • We currently have enough for the network but should plan for the future
 • Do not work with PCWS currently

• CF card module
 • Major problem for continuing to use/reuse CR1000 systems

• CR1000 system discontinued/replaced with CR1000x
New Satellite Comms options

• Iridium
 • 9602-N Modem primary
 • Also using the A3LA-X modems in some areas with mixed success
 • Xeos XI-202 in extreme cold

• ARGOS-3 PMT Kenwood
 • Still in testing

• SWARM Tile
 • Still in testing
Iridium

• Nal Research 9602-N
 • Through DOD Network
 • 340 byte messages
 • Cold temperature limitation cutoff
 • Currently in use on 12 stations
 • Tested and working with CR1000, CR3000, CR1000x, and PCWS systems
 • 200mA transmission power draw
 • 45mA Idle power

• Xeos XI-202
 • Through DOD Network
 • 340 byte messages
 • Uses the 9602 platform, adds a heater to extend cold temperature cutoff
 • Tested with CR systems
 • PCWS work needed
 • 50mA transmission power (averaging 30 seconds to transmit)
Argos Kenwood PMT-3

- Current Testing ongoing for viability with CR1000
- 0.1mA idle power draw
- 620mA at 7V for transmission
- 0.5-2W power draw depending on data transfer rate
- Temperature minimum -20°C
 - Testing ongoing to determine if this is a hard cutoff
- Command structure and integration issues
- Max data rate: 400 bits per second
SWARM Transmitter

- Currently works with CR systems
- Satellite network still expanding
- Cold testing ongoing
- Transmission frequency
- Sleep Mode power: 33 microamps
- Transmit power: 888-939mA
- Data rate: 1kbps
Temperature Measurements

- **RM Young 43347**
 - 1000 ohm Platinum Resistance thermometer
 - Non calibrated accuracy ± 0.3 C
 - Larger form factor
 - Expense
 - Added module needed to work with CR1000
 - Time constant: 42 seconds

- **Apogee St-110**
 - Epoxy coated thermistor
 - Non calibrated accuracy:
 - <0 ± 0.15 C
 - >0 ± 0.1 C
 - Small form factor
 - Inexpensive
 - Time Constant: 7 seconds

- **Apogee ST-300**
 - 100 ohm PRT
 - Non calibrated accuracy: ± 0.1 C
 - Larger form factor
 - Middle expense
 - Time Constant
Observation Methods

• Argos
 • 10 minute average values or instantaneous measurement depending on the instrument
 • Transmitted every 200 seconds

• Iridium
 • Full dataset of instantaneous measures
 • Full set of 10 minute averages

• Proposed WMO Standard:
 • Adds 1 minute averaged values of most instruments
 • Adds 2 minute Wind averaging
 • Test on Iridium systems
 • Possibly update Argos systems
 • Integrate other instruments with different observation strategy needs (e.g. Net Radiometers)
Questions?