Precipitation over the Southern Ocean: ERA5 and PWRF/AMPS evaluation during two snowfall events around Mertz Glacier

Diogo Luís¹, Irina V. Gorodetskaya*¹,², Katherine Leonard³,⁴, Elisabeth Schlosser⁵, Étienne Vignon⁶, F. Martin Ralph⁷, Kevin Manning⁸, Jordan Powers⁸, Michael Lehning⁴

*Corresponding author: irina.gorodetskaya@ua.pt

(1) Department of Physics, University of Aveiro, Portugal
(2) Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Portugal
(3) University of Colorado in Boulder, USA
(4) École Polytechnique Fédérale de Lausanne, Switzerland
(5) Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria
(6) Laboratoire de Météorologie Dynamique, Sorbonne Université, Paris, France
(7) Scripps Institution of Oceanography, UC San Diego, CA, USA
(8) National Center for Atmospheric Research, Boulder, USA

©Irina Gorodetskaya
• Important polynya system in this region
• Big contributor to the Antarctic Bottom Water (AABW) formation
• AABW plays a major role in the global ocean overturning circulation
• Thus, is a critical component of the climate system
Motivation

• AABW production is controlled by surface salinity, which is highly sensitive to freshwater input.

• Key contributions to freshwater input are melting of the ice shelves, sea ice and precipitation.

• Increased precipitation, as part of the enhanced global hydrological cycle, is expected to have a greater impact on the freshening of the ocean and is still highly uncertain.

• Precipitation is a poorly known variable in the region due to the lack of measurements.
Antarctic Circumnavigation Expedition (ACE)

• December 2016 - March 2017, on board icebreaker-type research vessel “Akademik Tryoshnikov”

Akademik Tryoshnikov nose-in to ice shelf in Mertz Polynya
Photo from: ACE report, Walton and Thomas (2018)
DATA

PRECIPITATION MEASUREMENTS:
- **Snow Particle Counter (SPC)** aboard ACE ship (only 2-3 Feb event)
- **Micro Rain Radar (MRR)** aboard ACE ship (only 2-3 Feb event)
- **MRR** in Dumont D’Urville (DDU) station (66.66°S, 140.00°E) (both events)

REANALYSIS/MODELS:
- ECMWF’s **ERA5 reanalysis** product (both events)
- **AMPS** (Antarctic Mesoscale Prediction System using Polar-WRF model) (only 2-3 Feb event)

RADIOSONDES:
- **ACE** ship (only 2-3 Feb event)
- **DDU** station (both events)
2-3 February event

LEGEND:
- Yellow triangle – ACE ship position
- Green star – DDU location
- Cyan line – Cold front
- Red line – Warm front
- Magenta line – indefinite type of front

Total Precipitation (mm) + MSLP (hPa) - 2017-01-31 06:00 UTC
- Extratropical cyclone **east** of Mertz region
- Easterly, **moderate** and along shore moisture transport
- Precipitation hits the ACE ship first and DDU later

2-3 February event
- **Snowfall** on ACE ship and DDU
- ERA5 precipitation type match with meteorological observations on the ship and DDU
- ACE ship at the boundary between dry and wet snow, according to ERA5
2-3 February event

- ERA5 **overestimates** peak of precipitation at the ACE ship position, and **underestimates** the peak at DDU
2-3 February event

PWRF/AMPS DOMAINS:
- Domain 1 -> 30 km resolution
- Domain 2 -> 10 km resolution

- ERA5, PWRF/Domain 1 and PWRF/Domain 2 have **similar results** at ACE ship position
 - **Both** ERA5 and PWRF **overestimate** snowfall compared to observations
8-10 February event

LEGEND:

- Yellow triangle – ACE ship position
- Green star – DDU location
- Cyan line – Cold front
- Red line – Warm front
- Magenta line – indefinite type of front
8-10 February event

- Extratropical cyclone **west** of DDU/Mertz
- Cyclone **blocked** by a high-pressure ridge
- **Intense** northerly moisture transport (identified as an **atmospheric river** by Gorodetskaya et al. (2020) algorithm)
ERA5 precipitation type shows **only snowfall** in DDU during this event, as observed in the station.
• Occurrence of virga between 5:00 and 15:00 UTC, 8 February and from 11:00 to 18:00 UTC, 9 February (Jullien et al., 2020)

• ERA5 overestimates snowfall during this event
2-3 February event

8-10 February event
Conclusions

- **Caution is needed** in the use of ERA5 (reanalysis in general) precipitation data in this region:
 - ERA5 seems to simulate reasonably well precipitation spatial patterns and precipitation type;
 - Differences in precipitation amount when compared with observations;
 - Difficulties in modelling precipitation sublimation (virga) over katabatic flows.

- PWRF/AMPS has similar results to ERA5 in the analysed event.

- ERA5 captures reasonably well vertical profiles compared to radiosondes in both events, but overestimate IVT and IWV in the weaker event and underestimates in the intense event.
References

Data used:

Thank you for your attention!

Acknowledgments

The Antarctic Circumnavigation Expedition was made possible by funding from the Swiss Polar Institute (SPI) and Ferring Pharmaceuticals.

This work is part of ACE project 18, supported by grants from the SPI, the BNP Paribas Foundation, and the Swiss National Science Foundation.

ACE project 11 (PI: Heini Wernli, ETH Zurich) is acknowledged for providing ACE MRR raw measurements.

IG thanks FCT/ MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020) and project ATLACE (CIRCNA/CAC/0273/2019) through national funds.

The authors also wish to thank Michael Sprenger (ETH Zurich) for creating and providing the fronts dataset.