Four years of coordinated seasonal sea ice predictions in the Southern Ocean

François Massonnet
J. Lieser, P. Reid, J. Fyfe, C. M. Bitz, W. Hobbs
2020-2021 Antarctic sea ice conditions

Antarctic Sea Ice Extent

Median 1981-2010 with 10-90%iles, 25-75%iles, and max/min (1979-2020)

Graph was plotted 22/06/2021 10:07 UTC
Source: EUMETSAT OSI SAF (http://osi-saf.eumetsat.int)

https://osisaf-hl.met.no/archive/osisaf/sea-ice-index/v2p1/sh/en/osisaf_sh_sie_daily-2years.png
2020-2021 Antarctic sea ice conditions

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/
What is going on with Antarctic sea ice?

- No significant trend, increasing variability, regional expressions
- No clear signature (yet?) of global radiative forcing on Antarctic sea ice
- Increase in variability
- Apparent increase in persistence/auto-correlation in area anomalies

https://climate.copernicus.eu/sites/default/files/inline-images/ts_1month_anomaly_polar_ei_CI_201902.png
The Sea Ice Prediction Network South (SIPN South) has three main goals:

1) Identify existing efforts in Southern Ocean seasonal sea ice forecasting (currently scattered) and build an international network;

2) Coordinate realistic prediction test cases and evaluate the skill of current forecast systems;

3) Lay the foundations for systematic evaluation of forecasts in the coming years.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of groups contributing</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Total number of forecasts received</td>
<td>160</td>
<td>199</td>
<td>191</td>
<td>243</td>
</tr>
</tbody>
</table>
A mechanism for summer sea ice predictability in the Southern Ocean

Correlation of October grid-point zonal wind speed with following March western Ross Sea sea ice area (1979-2015)

Climatology of ERA-Interim winds (1979-2015)

Enhanced October zonal winds \rightarrow Increased ice divergence \rightarrow Lower ice concentration \rightarrow Lower albedo \rightarrow Enhanced shortwave absorption \rightarrow Increased oceanic heat storage \rightarrow Delayed sea ice formation

A mechanism of reemergence for winter sea ice predictability

Correlation of September SST and potential temperature at different lags and depths

(a) EC-Earth2.2 (340-360 °E)
The 2020-2021 Southern Ocean summer sea ice forecasts

<table>
<thead>
<tr>
<th>Contributor name</th>
<th>Short name (in figures)</th>
<th>Forecasting method</th>
<th>Nb. of forecasts</th>
<th>Init. date</th>
<th>Diagnostics provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nico Sun</td>
<td>NicoSun</td>
<td>Statistical model</td>
<td>3</td>
<td>Nov. 30th</td>
<td>SIA+SIC+SIV</td>
</tr>
<tr>
<td>2 FIO-ESM</td>
<td>FIO-ESM</td>
<td>Coupled dynamical model</td>
<td>1</td>
<td>Nov. 1st</td>
<td>SIA</td>
</tr>
<tr>
<td>3 Barreira</td>
<td>barreira</td>
<td>Statistical model</td>
<td>1</td>
<td>Dec. 1st</td>
<td>SIA+SIC</td>
</tr>
<tr>
<td>4 NASA-GSFC (Alek Petty)</td>
<td>NASA-GSFC</td>
<td>Statistical model</td>
<td>1</td>
<td>Nov. 30th</td>
<td>SIA</td>
</tr>
<tr>
<td>5 Met Office</td>
<td>MetOffice</td>
<td>Coupled Dynamical Model</td>
<td>42</td>
<td>Dec. 1st</td>
<td>SIA+rSIA+SIC</td>
</tr>
<tr>
<td>6 CanSIPSv2</td>
<td>CanSIPSv2</td>
<td>Coupled Dynamical Model</td>
<td>20</td>
<td>Nov. 30</td>
<td>SIA+rSIA</td>
</tr>
<tr>
<td>7 CNRM</td>
<td>CNRM</td>
<td>Coupled Dynamical Model</td>
<td>51</td>
<td>Nov. 30</td>
<td>SIA+rSIA+SIC+SIV</td>
</tr>
<tr>
<td>8 Lamont Sea Ice Group</td>
<td>Lamont</td>
<td>Statistical model</td>
<td>1</td>
<td>Nov. 31st</td>
<td>SIA+rSIA+SIC</td>
</tr>
<tr>
<td>9 CMCC</td>
<td>CMCC</td>
<td>Coupled Dynamical Model</td>
<td>50</td>
<td>Oct. 31st</td>
<td>SIA+rSIA+SIC</td>
</tr>
<tr>
<td>10 ECMWF</td>
<td>ecmwf</td>
<td>Coupled Dynamical Model</td>
<td>51</td>
<td>Nov. 30th</td>
<td>SIA + rSIA</td>
</tr>
<tr>
<td>11 Sintexf2 (JAMSTEC)</td>
<td>sintexf2</td>
<td>Coupled Dynamical Model</td>
<td>12</td>
<td>Nov. 30th</td>
<td>SIA+rSIA</td>
</tr>
<tr>
<td>12 AWI</td>
<td>AWI-SDAP</td>
<td>Statistical model</td>
<td>1</td>
<td>Nov. 30th</td>
<td>SIP**</td>
</tr>
<tr>
<td>13 UCLouvan</td>
<td>ucl</td>
<td>Ocean—Sea Ice Model</td>
<td>10</td>
<td>Nov. 1st</td>
<td>SIA+rSIA+SIC+SIV</td>
</tr>
</tbody>
</table>

*received as monthly data, interpolated daily

** received as Sea Ice Probability
SIPN South predictions and verifying observations

Dec-Jan-Feb 2020-2021 total Antarctic sea ice area

- NASA-GSFC
- FIO-ESM
- barreira
- Nico5un
- ucl
- CanSIPSv2
- MetOffice
- CNRM
- Lamont
- ecmwf
- cmcc
- sintexf2
- SYSU
- OBS NSIDC-0081
- OBS OSI-401-b
SIPN South predictions and verifying observations
As for last years, statistical forecasts better capture the spatial distribution of sea ice concentration.
Forecasts of winter Antarctic sea ice: outliers are dynamical models
Probability of sea ice presence

Dynamical model (42 forecasts)

MetOffice | prob > 15% | 15 February 2021

Spread but with a bias

Statistical model (3 forecasts)

NicoSun | prob > 15% | 15 February 2021

(Too?) sharp but not so far from observations
Data and scripts to process Sea Ice Prediction Network South (SIPN South) analyses.
Conclusions

• As Antarctica becomes a hot spot for research (and tourism) the need for sea ice information is greater than ever

• Modeling and observational studies show evidence for seasonal Antarctic sea ice predictability

• Dynamical model contributions have large biases even at initial state, and are outperformed by statistical contributions

• A winter YOPP SOP (April-July 2022) will be highly beneficial for SIPN South
Thank you

@Fmassonnet

francois.massonnet@uclouvain.be

https://fmassonn.github.io/sipn-south.github.io/

www.climate.be/u/fmasson