The Polar WRF

Last modified on 2024-03-04

Update on Polar WRF

PWRF 4.5.1 released on September 25, 2023.

PWRF 4.5.1 has been tested extensively in both the Arctic and Antarctic using the NoahMP LSM. Please note that use of standard WRF downloaded from NCAR in the polar regions with the NoahMP LSM (“out of the box”) will give poor results.

Development work on PWRF 4.5.1 was funded by the National Science Foundation and Office of Naval Research.

PWRF 4.3.3 released on February 28, 2022.

PWRF 4.3.3 has been tested for summer conditions in Antarctica. Testing for other seasons and the Arctic is underway. Some new features include modifications to the Noah MP land surface scheme for ice sheets and a compile option for low ice freezing nuclei (IFN) concentrations for the Morrison and P3 microphysics schemes, suitable for the Southern Ocean and Antarctica.

We are asking all users to re-register for Polar WRF.

Statistics on Registered PWRF (Latest update 2021/05/07)

  • 482 registered users of Polar WRF
  • 363 International users
  • 119 registered US users
  • 43 countries including USA

Description:

Based on extensive experience with mesoscale modeling in the polar regions by the Polar Meteorology Group of the Byrd Polar and Climate Research Center at The Ohio State University, the Weather Research and Forecasting model (WRF) has been modified for use in the Polar Regions (referred to as the Polar WRF). The key modifications for Polar WRF are:

  • Optimal surface energy blance and heat transfer for the Noah-MP LSM over sea ice and permanent ice surfaces
  • Implemented specified but variable sea ice characteristics: fraction, ice thickness, snow depth on sea ice and albedo
  • Several microphysics adaptations for the Arctic and Antarctic environment

Extensive testing of Polar WRF over Arctic and Antarctic surfaces provides guidance on best choice of physics options. For the Artic see ban et al. (2023) and for the Antarctica se Xue et al. (2022) in the publications list below.

Polar WRF is used by forecasters as part of the National Science Foundation sponsored Antarctic Mesoscale Prediction System (AMPS; link provided below) to meet the operational and logistic needs of the United States Antarctic Program (USAP). AMPS simulations are performed at the National Center for Atmospheric Research twice per day (00Z and 12Z initializations), and cover progressively finer domains ranging from 30-km (covering most of the Southern Hemisphere) to 0.89-km (covering the region immediately surrounding McMurdo Station, the base of USAP operations). A 20-km resolution version of the Polar WRF is run here at the Byrd Polar and Climate Research Center twice per day for 5 days.


Status of Polar WRF:

Disclaimer: Polar WRF code is released and supported solely by the PMG and is currently based on standard WRF version:

  • 4.5.1 (released September 2023)
  • 4.3.3 (released February 2022)
  • 4.1.1 (released August 2019)
  • 3.9.1 (released August 2017)
  • 3.8.1 (released August 2016)
  • 3.7.1 (released August 2015)
  • 3.6.1 (released August 2014)
  • 3.5.1 (released September 2013)
  • 3.4.1 (released August 2012)
  • 3.3.1 (released September 2011)
  • 3.2.1 (released August 23, 2010)
  • 3.1.1 (released July 2009)
  • 3.0.1.1 (released November 2008)
  • Contact Dr. David Bromwich for details. The Polar WRF code cannot be guaranteed to work under all circumstances, so feedback will help iron out any remaining kinks. We will provide assistance with code use to the level consistent with our ongoing responsibilities.


    Future for Polar WRF: Polar WRF is a research modification of the standard WRF code and new capabilities will continue to be added. The polar capabilities in standard WRF will likely lag behind those available in the Polar WRF code from the Polar Meteorology Group (not necessarily supported by NCAR).


    Final thoughts:

    Watch this location for further updates that will be issued when needed. We appreciate your interest and trust you will acknowledge our efforts on behalf of the scientific community in presentations and publications. Please keep us informed as to manuscripts on Polar WRF so that we can maintain an online archive of relevant publications. Research supported by US federal funding, often from the National Science Foundation.




    Publications:

  • Ban, J., Z. Liu, D. H. Bromwich, and L. Bai, 2023: Improved regional forecasting of an extreme Arctic cyclone in August 2016 with WRF MRI-4DVAR. Q. J. R. Meteorol. Soc., https://doi.org/10.1002/qj.4569, in press. Manuscript (PDF)

  • Cerovecki, I., R. Sun, D. H. Bromwich, X. Zou, M. R. Mazloff, and S.-H. Wang, 2023: Addendum: Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period (2022 Environ. Res. Lett. 17 084008). Environ. Res. Lett., 18, 029401, https://doi.org/10.1088/1748-9326/acb162 Full Text (PDF).

  • Zou, X., P. M. Rowe, I. Gorodetskaya, D. H. Bromwich, M. A. Lazzara, R. R. Cordero, Z. Zhang, B. Kawzenuk, J. M. Cordeira, J. D. Wille, F. M. Ralph, and L.-S. Bai, 2023: Strong warming over the Antarctic Peninsula during combined atmospheric River and foehn events: Contribution of shortwave radiation and turbulence. J. Geophys. Res., 128, e2022JD038138. https://doi.org/10.1029/2022JD038138. Full Text (PDF)

  • Bromwich, D. H., J. G. Powers, K. W. Manning, X. Zou, 2022: Antarctic data impact experiments with Polar WRF During the YOPP-SH summer special observing period. Q. J. R. Meteorol. Soc., 148, 2194–2218, https://doi.org/10.1002/qj.4298. Full Text (PDF), Supplemental material (PDF)

  • Cerovecki, I., R. Sun, D. H. Bromwich, X. Zou, M. R. Mazloff, and S.-H. Wang, 2022: Impact of downward longwave radiative deficits on Antarctic sea-ice extent predictability during the sea ice growth period. Environ. Res. Lett., 17, 084008, https://doi.org/10.1088/1748-9326/ac7d66. Full Text (PDF), Supplemental material (PDF).

  • Xue, J., Z. Xiao, D. H. Bromwich, L. Bai, 2022: Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean. Front. Earth Sci., 16, 1005-1024, https://doi.org/10.1007/s11707-022-0971-8. Full Text (PDF)

  • Avila-Diaz, A., D. H. Bromwich, A. B. Wilson, F. Justino, S.-H. Wang, 2021: Climate extremes across the North American Arctic in modern reanalyses. J. Climate, 34, 2385–2410, https://doi.org/10.1175/JCLI-D-20-0093.1. Full Text (PDF)

  • Bozkurt, D, D. H. Bromwich, J. Carrasco, and R. Rondanelli, 2021: Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations. Clim. Dyn., 56, 3853-3874, https://doi.org/10.1007/s00382-021-05667-2. Full Text (PDF)

  • Bromwich, D. H., K. Werner, B. Casati, J. G. Powers, I. V. Gorodetskaya, F. Massonnet, V. Vitale, V. J. Heinrich, D. Liggett, S. Arndt, B. Barja, E. Bazile, S. Carpentier, J. F. Carrasco, T. Choi, Y. Choi, S. R. Colwell, R. R. Cordero, M. Gervasi, T. Haiden, N. Hirasawa, J. Inoue, T. Jung, H. Kalesse, S.-J. Kim, M. A. Lazzara, K. W. Manning, K. Norris, S.-J. Park, P. Reid, I. Rigor, P. M. Rowe, H. Schmithüsen, P. Seifert, Q. Sun, T. Uttal, M. Zannoni, and X. Zou, 2021: Year of Polar Prediction: A Focus on Antarctica. Bull. Amer. Meteor. Soc., 102, 515-522. Full Text (PDF)

  • Dodson, J. B., P. C. Taylor, R. H. Moore, D. H. Bromwich, K. M. Hines, K. L. Thornhill, C. A. Corr, B. E. Anderson, E. L. Winstead, and J. R. Bennett, 2021: Evaluation of simulated cloud water in low clouds over the Beaufort Sea in Arctic System Reanalysis using ARISE Airborne in situ observations. Atmos. Chem. Phys., 21, 11563-11580, https:/i.org/10.5194/acp-21-11563-2021. Full Text (PDF)

  • Hines, K. M., D. H. Bromwich, I. Silber, L. M. Russell, and L. Bai, 2021: Predicting frigid mixed-phase clouds for pristine coastal Antarctica. J. Geophys. Res., https://doi.org/10.1029/2021JD035112. Full Text (PDF), Supplemental material (PDF)

  • Justino, F., D. Bromwich, A. Wilson, A. Silva, A. Avila-Diaz, A. Fernandez, and J. Rodrigues, 2021: Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and Extra-tropics. Environ. Res. Lett., 16, 0440600, https://doi.org/10.1088/1748-9326/abf0d0. Full Text (PDF)

  • Xue, J., D. H. Bromwich, Z. Xiao, L. Bai, 2021: Impacts of initial conditions and model configuration on simulations of polar lows near Svalbard using Polar WRF with 3DVAR. Q. J. R. Meteorol. Soc., 147, 3806-3834, doi: 10.1002/qj.4158. Full Text (PDF)
  • Zou, X., D. H. Bromwich, A. Montenegro, S.-H. Wang, and L. Bai, 2021: Major surface melting over the Ross Ice Shelf part I: Foehn effect. Q. J. R. Meteorol. Soc., 147, 2874-2894, doi: 10.1002/qj.4104. Full Text (PDF)

  • Zou, X., D. H. Bromwich, A. Montenegro, S.-H. Wang, and L. Bai, 2021: Major surface melting over the Ross Ice Shelf part II: Surface energy balance. Q. J. R. Meteorol. Soc., 147, 2895-2916, doi: 10.1002/qj.4105. Full Text (PDF)

  • Bozkurt, D., D. H. Bromwich, J. Carrasco, K. M. Hines, J. C. Maureira, and R. Rondanelli, 2020: Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Advances in Atmospheric Sciences, 37, 477-493, https://doi.org/10.1007/s00376-020-9183-x. Full Text (PDF)

  • Edel, L., C. Claud, C. Genthon, C. Palerme, N. Wood, T. L’Ecuyer, and D. Bromwich, 2020: Arctic snowfall from CloudSat observations and reanalyses. J. Climate, 33, 2093-2109, https://doi.org/10.1175/JCLI-D-19-0105.1. Full Text (PDF)

  • Greco, S., G. D. Emmitt, A. DuVivier, K. Hines, and M. Kavaya, 2020: Polar Winds: Airborne Doppler Wind Lidar Missions in the Arctic for Atmospheric Observations and Numerical Model Comparisons. Atmosphere, 11,1141, http://dx.doi.org/10.3390/atmos11111141. Full Text (PDF)

  • Lubin, D., D. Zhang, I. Silber, R. C. Scott, P. Kalogeras, A. Battaglia, D. H. Bromwich, M. Cadeddu, E. Eloranta, A. Fridlind, A. Frossard, K. M. Hines, S. Kneifel, W. R. Leaitch, W. Lin, J. Nicolas, H. Powers, P. K. Quinn, P. Rowe, L. M. Russell, S. Sharma, J. Verlinde, and A. M. Vogelmann, 2020: AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bull. Amer. Meteor. Soc., 101, E1069–E1091, https://doi.org/10.1175/BAMS-D-18-0278.1. Full Text (PDF)

  • Turton, J. V., T. Mrolg ,and E. Collier, 2020: High-resolution (1 km) Polar WRF output for 79 N Glacier and the northeast of Greenland from 2014 to 2018. Earth Syst. Sci. Datai, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020. Full Text (PDF)
  • Hines, K. M., D. H. Bromwich, S.-H. Wang, I. Silber, J. Verlinde, and D. Lubin, 2019: Microphysics of summer clouds in central west Antarctica simulated by Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS). Atmos. Chem. Phys., 19, 12431-12452, doi: 10.5194/acp-19-12431-2019. Full Text (PDF)

  • Justino, F., A. B. Wilson, D. H. Bromwich, A. Avila, L.-S. Bai, and S.-H. Wang, 2019: Northern Hemisphere extratropical turbulent heat fluxes in ASRv2 and global reanalyses. J. Climate, 32, 2145-2166, doi: 10.1175/JCLI-D-18-0535.1. Full Text (PDF)

  • Silber, I., A. M. Fridlind, J. Verlinde, A. S. Ackerman, Y.-S. Chen, D. H. Bromwich, S.-H. Wang, M. Cadeddu, and E. W. Eloranta, 2019: Persistent supercooled drizzle at temperatures below -25C observed at McMurdo Station, Antarctica. J. Geophys. Res., 124, 10878-10895, doi: 10.1029/2019JD030882. Full Text (PDF), Supplemental material (PDF)

  • Silber, I., J. Verlinde, S.-H. Wang, D. H. Bromwich, A. M. Fridlind, M. Cadeddu, E. W. Eloranta, C. J. Flynn, 2019: Cloud influence on ERA5 and AMPS surface downwelling longwave radiation biases in West Antarctica. J. Climate, 32, 7935-7949, doi: 10.1175/JCLI-D-19-0149.1. Full Text (PDF), Supplemental material (PDF)

  • Turton, J. V, T. Molg, and D. van As, 2019: Atmospheric processes and climatological characteristics of the 79N Glacier (Northeast Greenland). Mon. Wea. Rev., 147, 1375-1394, doi: https://doi.org/10.1175/MWR-D-18-0366.1. Full Text (PDF)

  • Zou, X., D. H. Bromwich, J. P. Nicolas, A. Montenegro, and S.-H. Wang, 2019: West Antarctic surface melt event of January 2016 facilitated by foehn warming. Q. J. R. Meteorol. Soc., 145, 687-704, doi: 10.1002/qj.3460. Full Text (PDF). Supplemental material (PDF)

  • Bromwich, D., A. Wilson, L. Bai, Z. Liu, M. Barlage, C. Shih, S. Maldonado, K. Hines, S.-H. Wang, J. Woollen, B. Kuo, H. Lin, T. Wee, M. Serreze, and J. Walsh, 2018: The Arctic System Reanalysis Version 2. Bull. Amer. Meteor. Soc., 99, 805-828, doi: 10.1175/BAMS-D-16-0215.1. Full Text (PDF)

  • Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J. S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophy. Res. Lett., 45. doi: 10.1029/2018GL077092. Full Text (PDF), Supporting Information (docx)

  • Hines, K. M., and D. H. Bromwich, 2017: Simulation of late summer Arctic clouds during ASCOS with Polar WRF. Mon. Wea. Rev., 145, 521-541, doi: 10.1175/MWR-D-16-0079.1. Full Text (PDF)

  • Smith, W. L., C. Hansen, A. Bucholtz, B. E. Anderson, M. Beckley, J. G. Corbett, R. I. Cullather, K. M. Hines, M. Hofton, S. Kato, D. Lubin, R. H. Moore, M. Segal-Rosenheimer, J. Redemann, S. Schmidt, R. Scott, S. Song, J. D. Barrick, J. B. Blair, D. H. Bromwich, C. Brooks, G. Chen, H. Cornejo, C. A. Corr, S.-H. Ham, A. S. Kittelman, S. Knappmiller, S. LeBlanc, N. G. Loeb, C. Miller, L. Nguyen, R. Palikonda, D. Rabine, E. A. Reid, J. A. Richter-Menge, P. Pilewskie, Y. Shinozuka, D. Spangenberg, P. Stackhouse, P. Taylor, K. L. Thornhill, D. van Gilst1, and E. Winstead, 2017: Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE): The Arctic Radiant Energy System During the Critical Seasonal Ice Transition. Bull. Amer. Meteor. Soc., doi: 10.1175/BAMS-D-14-00277.1. Full Text (PDF)

  • Wille, J. D., D. H. Bromwich, J. J. Cassano, M. A. Nigro, M. E. Mateling,,M. A. Lazzara, 2017: Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf, Antarctica with Unmanned Aircraft Observations. J. Appl. Meteor. Climatol., doi: 10.1175/JAMC-D-16-0339.1. Full Text (PDF)

  • Bromwich, D. H., A. B. Wilson, L. Bai, G. W. K. Moore, and P. Bauer, 2016: A comparison of the regional Arctic System Reanalysis and the global ERA-Interim Reanalysis for the Arctic. Q. J. R. Meteorol. Soc., 142, 644-658, doi: 10.1002/qj.2527. Full Text (PDF)

  • Moore, G. W. K., D. H. Bromwich, A. B. Wilson, I, Renfrew, and L. Bai, 2016: Arctic System Reanalysis improvements in topographically-forced winds near Greenland. Q. J. R. Meteorol. Soc., 142, 2033-2045, doi: 10.1002/qj.2798. Full Text (PDF)

  • Wille, J. D., Bromwich, D. H., M. Nigro, J. Cassano, M Mateling, M. Lazzara, and S.-H. Wang, 2016: Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf with tower observations. J. Appl. Meteor. Climatol., 55, 2349-2367, doi: 10.1175/JAMC-D-16-0032.1. Full Text (PDF)

  • Hines, K. M., D. H. Bromwich, L. Bai, C. M. Bitz, J. G. Powers, and K. W. Manning, 2015: Sea ice enhancements to Polar WRF. Mon. Wea. Rev., 143, 2363-2385, doi: 10.1175/MWR-D-14-00344.1. Full Text (PDF)

  • Steinhoff, D. F., D. H. Bromwich, J. C. Speirs, H. A. McGowan, and A. J. Monaghan, 2014: Austral summer Foehn winds over the McMurdo Dry Valleys of Antarctica from Polar WRF. Q. J. R. Meteorol. Soc., 140, 1825-1837, doi: 10.1002/qj.2278. Full Text (PDF)
  • Tilinina, N., S. K. Gulev, and D. H. Bromwich, 2014: New view of Arctic cyclone activity from the Arctic System Reanalysis. Geophys. Res. Letts., 41, 1766-1772, doi: 10.1002/2013gl058924. Full Text (PDF)
  • Seo, H., and J. Yang, 2013: Dynamical response of the Arctic atmospheric boundary layer process to uncertainties in sea-ice concentration. J. Geophys. Res., 118, 12,383-12,402, doi: 10.1002/2013JD02031.

  • Steinhoff, D. F., D. H. Bromwich, and A. J. Monaghan, 2013: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Q. J. R. Meteorol. Soc., 139, 1615-1631, doi: 10.1002/qj.2038. Full Text (PDF)

  • Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and ofrecasting performance in the Antarctic. J. Geophys. Res., 118, 274-292, doi: 10.1029/2012JD018139. Full Text (PDF)

  • Kumar, A., S. K. R. Bhowmik, and A. K. Das, 2012: Implementation of Polar WRF for short range prediction of weather over Maitri region in Antarctica. J. Earth Sys. Sci., 121, 1125-1143. Full Text (PDF)

  • Wilson, A. B., D. H. Bromwich, K. M. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain. 2. Atmospheric hydrologic cycle. J. Geophys. Res., 17, D04107, doi: 10.1029/2011JD016765. Full Text (PDF)

  • Hines, K. M., D. H. Bromwich, L.-S. Bai, M. Barlage, and A. G. Slater, 2011: Development and testing of Polar WRF. Part III. Arctic land. J. Climate, 24, 26-48, doi: 10.1175/2010JCLI3460.1. Full Text (PDF)

  • Wilson, A. B., D. H. Bromwich, K. M. Hines, 2011: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis. J. Geophys. Res., 116, D11112, doi: 10.1029/2010JD015013. Full Text (PDF)

  • Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and Testing of Polar Weather Research and Forecasting Model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, doi:10.1029/2008JD010300. Full Text (PDF)

  • Hines, K.M., D.H. Bromwich, M. Barlage, and A.G. Slater, 2009: Arctic land simulations with Polar WRF. Preprints, 10th Conference on Polar Meteorology and Oceanography, American Meteorological Society, 18-21 May 2009, Madison, WI. (PDF)

  • Wilson, A.B., D.H. Bromwich, K.M. Hines, and C.E. Landis, 2009: Enhancement of Polar WRF Arctic atmospheric and surface processes. Preprints, 10th Conference on Polar Meteorology and Oceanography, American Meteorological Society, 18-21 May 2009, Madison, WI. (PDF)

  • Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar WRF. Part I. Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 1971-1989. Full Text (PDF)


  •